Erosion Processes and Prediction in NW U.S. Forests

Bill Elliot, Pete Robichaud, Randy Foltz Research Engineers Air, Water and Aquatic Science Program Rocky Mountain Research Station Moscow, Idaho

Outline of Presentation

- Background
- Forest Erosion Processes

Predictive Models

Sediment from Forests is not new!

- In 500 BC, Jewish slaves wept by Babylonian irrigation canals as they dug out sediment from eroding forests
 - "By the rivers of Babylon we sat and wept when we remembered Zion." Psalm 137

Sediment from Forests is not new!

- In 500 BC, Jewish slaves wept by Babylonian irrigation canals as they dug out sediment from eroding forests on the Anatolian Plateau
 - "By the rivers of Babylon we sat and wept when we remembered Zion." Psalm 137
- In 2011, the Lower Granite Dam in Idaho will accumulate about 100,000 m³ of sediment that the Corps must manage!

They too may sit and weep!

Rocky Mountai

Sources of Sediment

- Surface Erosion
- Mass Wasting
- Stream Channel Erosion

Minimal unless slopes are disturbed

- Timber Mgt
- Wildfire
- Roads

Surface Erosion

Forest Management Disturbances

Skid TrailsPrescribed Fire

Soil Properties

Sandy soils resist compaction

 Sandy soils resist compaction
 Silt and Clay soils may become permanently compacted

Iountain Re🐒

Soil Properties

Fire & Infiltration

Following wildfire, soils can become "hydrophobic" or water repellent
Infiltration is reduced for months to years

Soil Properties

- Sandy soils are more likely to become repellant
- Silt soils may be naturally repellant, or may resist repellancy

Cover is how we manage erosion

Decreased litter cover increases erosion

Rocky

- Increased raindrop impact on soil particles
- Increased surface sealing
- Reduced infiltration
- Increased runoff
- Increased rilling

Some Perspective on Cover

- Management disturbance may be minimal, exposing less than 10% mineral soil
- Skid trails can be treated
 - Seeding
 - Mulching
 - Water bars
 - Forested Buffers
- Data often show
 minimal mgt impact

Erosion and Wildfire

- Wildfire increases runoff
 - Soils may be water repellent
 - Cover is reduced

Erosion and Wildfire

- Wildfire increases runoff
 - Soils may be water repellent
 - Cover is reduced
- Wildfire increase hillslope erosion
 - As much as 1000x forest erosion
 - A natural part of the ecosystem

What about those **roads**?

Sediment from roads is only exceeded by sediment from wildfire

Forest Roads serve many purposes

Timber harvestFire suppressionRecreation

Frequently roads are removed

To improve watershed healthTo offset other sources of sediment

Road's evil twin: The ATV Trail

- The erodibility of ATV trails may be higher than any other soil condition
- Unmanaged ATV trails frequently cross streams
- Considerable effort by management agencies to improve trail management

Effects of All-Terrain Vehicles on Forested Lands and Grasslands

U.S

2

What about **Sediment from Landslides**?

- Sediment from landslides may dominate the sediment budget
- Landslides due to rain-on-snow or heavy rains in the (finer-textured soils)

Rocky N

Landslides follow wildfire on coarser-textured soils

Some Landslide Principals

- Timing
 - Earthslides may occur 3-5 yrs after a vegetation disturbance when roots decompose
 - Debris flows linked to water repellency for 1-2 years following wildfire
- Storm Type
 - Earthslides associated with wet periods and rain-on-snow events
 - Debris flows driven by high intensity localized
 storms

- Sediment from wildfires or landslides may take years to decades to be routed through a stream system
- Moderate flows move most sediment
- Overbank flows may result in deposition
- Stream channel alteration triggers erosion

Sediment Routing

Sediment Summary

- Sediment from forests is linked to disturbances
- Forest management generates minimal additional sediment (except for access)
- Fire and weather are biggest factors in sediment generation
- Sediment from recreation sources is increasing

Predictive Models Available

Project scale models (1-100 acres)

Rocky M

Subwatershed models (up to 10 sq km)
 New GIS tools

Project Scale Tools

RMRS Online interfaces to the Water

Erosion Prediction Project

Forest Service WEPP Interfaces

Example: WEPP FuME Input

Hillslope horizontal length (ft) 🕿				
		400	Total hillslope	
Treated hillslope 350		50	Buffer	

Hillslope gradient (%) 🛽			Disturbance return period (y) 📧			
Тор	Middle	Тое	Wildfire	Prescribed fire	Thinning	
10	30	15	40	20	20	

Run WEPP FuME

Example WEPP:FuME Output

Output summary based on 50 years of possible weather

Line	Source of sediment	Sediment delivery in year of disturbance (ton mi ⁻²)	Return period of disturbance (y)	"Average" annual hillslope sedimentation (ton mi ⁻² y ⁻¹)
1	Undisturbed forest		1	0
2	Wildfire	1548.8	40	38.7
3	Prescribed fire	166.4	20	8.3
4	Thinning	6.4	20	0.3
5	Low access roads	1.4 to 10.3	1	1.4 to 10.3
6	High access roads	3.6 to 12.6	1	3.6 to 12.6

Rocky Mountain Research Station

Example: ERMiT Mitigation Table

Mitigation Treatment Comparisons					
Probability that sediment yield	Event sediment delivery (ton ac ⁻¹)				
will be exceeded	Year following fire				
20 % 🥺	1st year	2nd year	3rd year	4th year	5th year
Untreated 🕀	11.35	7.07	4.24	2.82	1.2
Seeding 🕀	11.35	4.68	3.67	2.26	1.2
Mulch (0.5 ton ac ⁻¹) 🖨	4.68	4.47	4.24	2.82	1.2
Mulch (1 ton ac ⁻¹) ⊟	3.75	3.79	4.24	2.82	1.2
Mulch (1.5 ton ac ⁻¹) 🖨	3.69	3.6	4.24	2.82	1.2
Mulch (2 ton ac ⁻¹) ⊟	3.6	3.54	4.24	2.82	1.2
Erosion Barriers: Diameter 0.15 ft Spacing 50 ft 🕺 🕿					
Logs & Wattles 😑	7.74	7.07	4.24	2.82	1.2

GIS Tools

- GeoWEPP for ArcView or ArcGIS 9.X
 - Builds WEPP Watershed scenarios
 - Need to convert to ArcGIS 10.x
 - Can combine subwatershed runs using GIS tools

Risks in Selected Drainages

GIS Tools

GeoWEPP for ArcView or ArcGIS 9.x

- Builds WEPP Watershed scenarios
- Need to convert to ArcGIS 10.x
- Can combine subwatershed runs using GIS tools
- IC Water routes sediment pulses through river systems

GIS Sedimentation Tools on the Horizon

- Online GIS interface to WEPP technology
 Enhance hydrology in WEPP technology to include base flow as well as surface and lateral flow
- Improved flood routing and channel process modeling

Landslide Tools

RMRS LISA single slope stability tool
 Local GIS Regression Tools
 Basin GIS sediment regression tools

 Sediment = f(slope, area, precip, ...)

Rocky

Summary Sediment generation depends on

topography, climate, geology/soil and

vegetation

Summary

Sediment generation depends on topography, climate, geology/soil and vegetation
 Erosion is associated with disturbances

Summary

- Sediment generation depends on topography, climate, geology/soil and vegetation
- Erosion is associated with disturbances
- Erosion can be reduced by reducing frequency or severity of disturbances
 - Fuel management
 - Road improvement or removal

Questions & Comments?