Erosion Processes and Prediction in NW U.S. Forests

Bill Elliot, Pete Robichaud, Randy Foltz
Research Engineers
Air, Water and Aquatic Science Program
Rocky Mountain Research Station
Moscow, Idaho
Outline of Presentation

- Background
- Forest Erosion Processes
- Predictive Models

* Moscow, Idaho
Sediment from Forests is not new!

- In 500 BC, Jewish slaves wept by Babylonian irrigation canals as they dug out sediment from eroding forests
 - “By the rivers of Babylon we sat and wept when we remembered Zion.” Psalm 137
Sediment from Forests is not new!

- In 500 BC, Jewish slaves wept by Babylonian irrigation canals as they dug out sediment from eroding forests on the Anatolian Plateau
 - “By the rivers of Babylon we sat and wept when we remembered Zion.” Psalm 137

- In 2011, the Lower Granite Dam in Idaho will accumulate about 100,000 m³ of sediment that the Corps must manage!
 - They too may sit and weep!
Sources of Sediment

- Surface Erosion
- Mass Wasting
- Stream Channel Erosion
Surface Erosion

- Minimal unless slopes are disturbed
 - Timber Mgt
 - Wildfire
 - Roads
Forest Management Disturbances

- Skid Trails
- Prescribed Fire
Soil Properties

- Sandy soils resist compaction
Soil Properties

- Sandy soils resist compaction
- Silt and Clay soils may become permanently compacted
Following wildfire, soils can become “hydrophobic” or water repellent.

Infiltration is reduced for months to years.
Soil Properties

- Sandy soils are more likely to become repellant
- Silt soils may be naturally repellant, or may resist repellancy
Cover is how we manage erosion

- Decreased litter cover increases erosion
 - Increased raindrop impact on soil particles
 - Increased surface sealing
 - Reduced infiltration
 - Increased runoff
 - Increased rilling
Some Perspective on Cover

- Management disturbance may be minimal, exposing less than 10% mineral soil
- Skid trails can be treated
 - Seeding
 - Mulching
 - Water bars
 - Forested Buffers
- Data often show minimal mgt impact
Erosion and Wildfire

- Wildfire increases runoff
 - Soils may be water repellent
 - Cover is reduced
Erosion and **Wildfire**

- **Wildfire** increases runoff
 - Soils may be water repellent
 - Cover is reduced
- **Wildfire** increases hillslope erosion
 - As much as 1000x forest erosion
 - A natural part of the ecosystem
What about those roads?

- Sediment from roads is only exceeded by sediment from wildfire
Forest Roads serve many purposes

- Timber harvest
- Fire suppression
- Recreation
Frequently roads are removed

- To improve watershed health
- To offset other sources of sediment
Road’s evil twin: The ATV Trail

- The erodibility of ATV trails may be higher than any other soil condition.
- Unmanaged ATV trails frequently cross streams.
- Considerable effort by management agencies to improve trail management.
What about Sediment from Landslides?

- Sediment from landslides may dominate the sediment budget.
- Landslides due to rain-on-snow or heavy rains in the (finer-textured soils).
- Landslides follow wildfire on coarser-textured soils.
Some Landslide Principals

- **Timing**
 - Earthslides may occur 3-5 yrs *after* a vegetation disturbance when roots decompose
 - Debris flows linked to water repellency for 1-2 years following wildfire

- **Storm Type**
 - Earthslides associated with *wet periods* and rain-on-snow events
 - Debris flows driven by *high intensity localized storms*
Sediment Routing

- Sediment from wildfires or landslides may take years to decades to be routed through a stream system.
- Moderate flows move most sediment.
- Overbank flows may result in deposition.
- Stream channel alteration triggers erosion.
Sediment Summary

- Sediment from forests is linked to disturbances
- Forest management generates minimal additional sediment (except for access)
- Fire and weather are biggest factors in sediment generation
- Sediment from recreation sources is increasing
Predictive Models Available

- Project scale models (1-100 acres)
- Subwatershed models (up to 10 sq km)
- New GIS tools
Project Scale Tools

- RMRS Online interfaces to the Water Erosion Prediction Project
Example: WEPP FuME Input
Example WEPP: FuME Output

Output summary based on 50 years of possible weather

<table>
<thead>
<tr>
<th>Line</th>
<th>Source of sediment</th>
<th>Sediment delivery in year of disturbance (ton mi(^{-2}))</th>
<th>Return period of disturbance (y)</th>
<th>"Average" annual hillslope sedimentation (ton mi(^{-2}) y(^{-1}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Undisturbed forest</td>
<td></td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>Wildfire</td>
<td>1548.8</td>
<td>40</td>
<td>38.7</td>
</tr>
<tr>
<td>3</td>
<td>Prescribed fire</td>
<td>166.4</td>
<td>20</td>
<td>8.3</td>
</tr>
<tr>
<td>4</td>
<td>Thinning</td>
<td>6.4</td>
<td>20</td>
<td>0.3</td>
</tr>
<tr>
<td>5</td>
<td>Low access roads</td>
<td>1.4 to 10.3</td>
<td>1</td>
<td>1.4 to 10.3</td>
</tr>
<tr>
<td>6</td>
<td>High access roads</td>
<td>3.6 to 12.6</td>
<td>1</td>
<td>3.6 to 12.6</td>
</tr>
</tbody>
</table>

Rocky Mountain Research Station
Example: ERMiT Mitigation Table

<table>
<thead>
<tr>
<th>Probability that sediment yield will be exceeded</th>
<th>Event sediment delivery (ton ac(^{-1}))</th>
<th>Year following fire</th>
</tr>
</thead>
<tbody>
<tr>
<td>20 %</td>
<td></td>
<td>1st year</td>
</tr>
<tr>
<td>Untreated</td>
<td></td>
<td>11.35</td>
</tr>
<tr>
<td>Seeding</td>
<td></td>
<td>11.35</td>
</tr>
<tr>
<td>Mulch (0.5 ton ac(^{-1}))</td>
<td></td>
<td>4.68</td>
</tr>
<tr>
<td>Mulch (1 ton ac(^{-1}))</td>
<td></td>
<td>3.75</td>
</tr>
<tr>
<td>Mulch (1.5 ton ac(^{-1}))</td>
<td></td>
<td>3.69</td>
</tr>
<tr>
<td>Mulch (2 ton ac(^{-1}))</td>
<td></td>
<td>3.6</td>
</tr>
<tr>
<td>Erosion Barriers: Diameter</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.15 ft</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Logs & Wattles</td>
<td></td>
<td>7.74</td>
</tr>
</tbody>
</table>

Note: The data in the table represents the mitigation treatment comparisons for event sediment delivery following a fire in different treated conditions.
GIS Tools

- GeoWEPP for ArcView or ArcGIS 9.x
 - Builds WEPP Watershed scenarios
 - Need to convert to ArcGIS 10.x
 - Can combine subwatershed runs using GIS tools
GIS Tools

- GeoWEPP for ArcView or ArcGIS 9.x
 - Builds WEPP Watershed scenarios
 - Need to convert to ArcGIS 10.x
 - Can combine subwatershed runs using GIS tools

- IC Water routes sediment pulses through river systems
GIS Sedimentation Tools on the Horizon

- **Online** GIS interface to WEPP technology
- Enhance hydrology in WEPP technology to include base flow as well as surface and lateral flow
- Improved flood routing and channel process modeling
Landslide Tools

- RMRS LISA single slope stability tool
- Local GIS Regression Tools
- Basin GIS sediment regression tools
- Sediment = f(slope, area, precip, ...)

Rocky M
Sediment generation depends on topography, climate, geology/soil and vegetation.
Summary

- Sediment generation depends on topography, climate, geology/soil and vegetation
- Erosion is associated with disturbances
Summary

- Sediment generation depends on topography, climate, geology/soil and vegetation
- Erosion is associated with disturbances
- Erosion can be reduced by reducing frequency or severity of disturbances
 - Fuel management
 - Road improvement or removal
Questions & Comments?