Characterization of soil microtopography effects on runoff and soil erosion rates under simulated rainfall

J. Vermang, L.D. Norton, C. Huang, D. Gabriels
• Introduction and hypothesis
• Materials & methods
• Results
 – Rainfall simulations
 – Rougness indices
 – Erosion modeling
• Conclusion
• Soil surface roughness: important factor influencing soil erosion

• WEPP: interrill sediment delivery D_i

$$D_i = K_{iadj} \cdot I_e \cdot \sigma_{ir} \cdot SDR_{RR} \cdot F_{nozzle} \cdot (R_s/w)$$

SDR_{RR}: function of random roughness
• How does soil surface roughness influence runoff and soil erosion?
• Which indices describe soil surface roughness well?
• Possibility to improve erosion modeling
• Introduction and hypothesis
• **Materials & methods**
• Results
 – Rainfall simulations
 – Roughness indices
 – Erosion modeling
• Conclusion
Materials & methods

- Soil: silt loam
- Sieving to four roughness classes
 - Very smooth (0.3 – 1.2 cm)
 - Smooth (1.2 – 2.0 cm)
 - Rough (2.0 – 4.5 cm)
 - Very rough (4.5 – 10.0 cm)
- Soil trays: 0.6 x 1.2 m
- Slope set at 5%
Materials & methods

• Rainfall simulator
 – Oscillating nozzle simulator
 – Rainfall intensity: 50.2 ± 2.1 mm/h
 – Duration: 1.5 h
Materials & methods

• Soil surface roughness measurements
 – Instantaneous profile laser scanner
 – Before and after rainfall simulations
• Introduction and hypothesis
• Materials & methods
• Results
 – Rainfall simulations
 – Roughness indices
 – Erosion modeling
• Conclusion
Results: Runoff

A graph showing the relationship between cumulative rainfall (mm) and runoff rate (mm h⁻¹) for different surface roughness conditions: Very smooth, Smooth, Rough, and Very rough.
Results: Runoff

- Highest final runoff rate for very smooth surface (0.3 – 1.2 cm), lowest for rough surface (2.0 – 4.5 cm)
- Very rough surface NOT lowest final runoff rate due to
 - Formation of depositional crust
 - Topography forcing water to flow to the depressions rather than to infiltrate
Results: Soil loss

Wash rate (g m$^{-2}$ min$^{-1}$) vs. Cumulative rainfall (mm)

- **Very smooth**
- **Smooth**
- **Rough**
- **Very rough**
Results: Soil loss

- Total soil loss highest for very smooth soil surface, lowest for rough soil surface.
- Final wash rates comparable for all soil surface roughnesses.
• Introduction and hypothesis
• Materials & methods
• Results
 – Rainfall simulations
 – Roughness indices
 – Erosion modeling
• Conclusion
Results: Roughness indices

- Random Roughness (RR)
- Characterisation by the variogram:
 - Range, sill, (sill-nugget)/range
- Fractional Brownian motion (fBm)
 - Fractal dimension, crossover length
- Revised Triangular Prism surface area Method (RTPM)
 - Fractal dimension
Results: Roughness indices

- DEM: correction for slope and scanning artifacts
Results: Roughness indices

- Random Roughness (RR)
Results: Roughness indices

- Variogram:
 - Geometric anisotropy
 - Exponential model

- Rough surface:
 small scale periodic patterns

Sill = 6.6 mm²
Range = 38 mm
Smooth (1.2 – 2.0 cm)

Sill = 26.5 mm²
Range = 22 mm
Rough (2.0 – 4.5 cm)
Results: Roughness indices

- Variogram parameters
 - Sill: good predictor
 - Range: Smooth surface not in line
Results: Roughness indices

- Fractional Brownian motion

- Fractal dimension (D): decreasing trend
- Crossover length (l): no constant trend
Results: Roughness indices

- Revised Triangular Prism method
 - Better predictor than fBm
 - Little significant differences
• Expectations for use in erosion models:
 – RR differentiates good between roughness classes
 – Improvements can be expected with real measured values of RR
 – Use of Sill or RTPM:
 • spatial correlation
 • lower significant differences
 – Best option: use of DEM by depression filling models
• Introduction and hypothesis
• Materials & methods
• Results
 – Rainfall simulations
 – Roughness indices
 – Erosion modeling
• Conclusion
Conclusion

- **Effect on runoff & soil loss**
 - delay in runoff rather than the decrease of soil erosion amount.

- **Roughness indices**
 - Random roughness performs well
 - Spatial correlation taken into account:
 - Variogram sill and RTPM fractal dimension perform best
Thank you for your attention!

Denali NP, 10/11/2011
Characterization of soil microtopography effects on runoff and soil erosion rates under simulated rainfall

J. Vermang¹, L.D. Norton², C. Huang², D. Gabriels¹

(1) Department of Soil Management, UNESCO Chair of Eremology, Ghent University, Belgium
(2) USDA-ARS, National Soil Erosion Research Laboratory, West Lafayette, IN, USA