Development of a Combined Wind and Water Erosion Model (WWEM) for the Object Modeling System

J.C. Ascough II¹, D.C. Flanagan², C.C. Truman³, O. David⁴

¹USDA-ARS, Fort Collins, CO USA; ²USDA-ARS, West Lafayette, IN USA; ³USDA-ARS, Tifton, GA, USA; ⁴Colorado State Univ., Fort Collins, CO USA

Component library (erosion processes, statistical analysis, visualization, ...)
2004 - NRCS Re-evaluated its Need for Erosion Prediction Technology from the USDA-ARS:

1. **Short-term** ➔ **Delivery of the WEPS model** so that NRCS could test and subsequently implement it in their field offices as a replacement for the WEQ.

2. **Long-term** ➔ “NRCS proposes to collaborate with ARS to build a single process based model to make erosion prediction calculations. NRCS proposes that this model be capable of making rainfall induced rill and interrill erosion computations, as well as computations for wind erosion together or independently of one another. This model would naturally incorporate the technologies currently in WEPS, the Water Erosion Prediction Project (WEPP)…”

(Letter from L.E. Clark, NRCS Deputy Chief, dated March 1, 2004).
WWEM History: I. Initial Single Event Model Under the Object Modeling System (OMS) Version 1

September 2004 to June 2005

Disaggregation of WEPP v2004.7 hillslope model components → Route.for and underlying subroutines + new Main.for

Comparison of soil loss and sediment yield results for initial erosion stand-alone program and original WEPP v2004.7 model

Integration of WEPP v2004.7 hillslope model components into OMS Version 1 – OMS controls space/time looping
OMS Principal Architecture

Component-Based Modeling Example

OMS Simulation Types
- Optimization
- Uncertainty
- Sensitivity
- Calibration
- Visualization
- Forecasting

System Components
- Data IO
- Time
- Space
- Control
- Statistics

Science Components
- Erosion
- Plant Growth
- Groundwater
- Water Quality
- ET

Component Descriptions
- ETP
- Interception
- Snow
- Soilwater
- Groundwater
- Surface RO
- SS RO
- GW Flow
- Stream RO
- Irrigation
- Erosion
- Groundwater use
- Surface water use

OMS Principal Architecture Overview
- Temporal
- Spatial
Object Modeling System (OMS) Overview

- **Software Framework for Environmental Modeling**
 - “Science Building Blocks”

- Improve model code quality and modularity to support reuse and substitutability

- Reduce redundancy in model development while allowing for flexible changes in science

- Improve overall model maintainability and deployment - simplify technology transfer

- Reduce IT integration challenges for researchers

http://www.javaforge.com/project/oms
WWEM History: II. WWEM Components Expanded Under OMS Version 2

2006-2008

Added infiltration, kinematic wave, ET, snow process, soil water redistribution, and WEPS core wind erosion components

WWEM Primary Components

Weather

Precipitation

Intensity/Energy

Temperature, Solar Radiation, Humidity, Wind Speed

Evapotranspiration

Infiltration, Water Balance, Kinematic Wave Overland Flow

Topography

Runoff Depth, Peak Runoff Rate, Effective Runoff Duration, Effective Duration of Rainfall Excess

WEPS Wind Erosion

WEPP Hillslope Water Erosion

Standalone WEPP hillslope code upgraded to v2006.5

Java
WEPP code upgraded to v2008.907 (upgrade to v2010.1 almost completed)

Space/time control transferred back to model components

No GUI

OMS Annotation-Based

Single Component Entry Point

CALL weperos

/runoff,peakro,effdrn,effint,effdrr,qsout,qout,qnpart,fwidth,rspace,width,efflen,kiadj,kradj,shcrtadj,frcsol,frctrl,rrc,nslpts,slplen,dstot,stdist,avsolekgm,avsolekg,avsolekgm2,avsoleta,dtmean,dtmax,dtmxpt,irdgdx,dpmean,dpmax,dpmxpt, enrato/)
WWEM Components Modified for OMS3 Annotation Design

Modeling Component = POJO + Annotations

Plain Old Java Object

Simple Java Example Component with Annotated I/O Fields

```java
public class CircleArea {
    @In  public double radius;
    @Out public double area;

    @Execute
    public void runme() {
        area = Math.PI * radius * radius;
    }
}
```

- Tag the fields being used for input and output with `@In` and `@Out`
- Required meta data for OMS
- Also applies to other languages such as FORTRAN, C, and C++

FORTRAN Annotations
- Use FORTRAN code in OMS directly
 - No C/C++ bridge required!
- Define OMS components in FORTRAN
- Integrated with build system

1. **Compile/link**: `*.f90`
2. **Parse annotations in *.f90**
3. **Auto-generate Java bindings**
 - `Model.dll`
 - `Model.exe`
 - `Model.jar`
4. **Compile/package all bindings**

International Symposium on Erosion and Landscape Evolution September 18-21 2011 Anchorage, AK
Using Annotations to Link Model Components in OMS3

class OverlandFlow {
 @Out Depstor
 public LandUnit lu;
 ...
}

class GreenAmpt {
 @In Depression
 public LandUnit lu;
 ...
}

... out2in(Depstor, "hru", Depression, "hru");
... out2in, field2in, out2field, feedback, ...

"Constructor Code"
Objective

Quantify effects of constant (I_c) and variable (I_v) rainfall intensity patterns (I_{vf} - typical and I_{ve} - extreme) on runoff and sediment losses from a conventionally tilled Ft. Collins sandy clay loam

Rainfall Simulator

Simulated rainfall applied to each 6-m² plot with an oscillating nozzle rainfall simulator (80150 Veejet nozzles, ~2.3-mm median drop size). Simulator was placed 3 m above each 6-m² plot.
Methods

- Runoff (R) and sediment (E) were measured continuously from each 6-m² plot at 5-min. intervals for 60 mins.

- Treatments (5 rainfall intensity patterns: $I_c=20$ mm/h, I_{vf}, $I_c=45$ mm/h, $I_c=65$ mm/h, I_{ve})

- $n=3$
Runoff (mm h\(^{-1}\))

Time (min)

Ic-20 Ic-47 Ic-65

Ivf Ive

Soil Loss (kg m\(^{-2}\) h\(^{-1}\))

Time (min)

Ic-20 Ic-47 Ic-65

Ivf Ive
Initial K_i, K_r, and τ_c initially estimated from WEPP baseline erodibility calculations and then adjusted.
Statistical Evaluation – Runoff and Erosion

<table>
<thead>
<tr>
<th>Intensity (mm h⁻¹)</th>
<th>RT Observed (mm)</th>
<th>RT Predicted (mm)</th>
<th>PBIAS¹ (%)</th>
<th>ET Observed (kg ha⁻¹)</th>
<th>ET Predicted (kg ha⁻¹)</th>
<th>PBIAS (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>2.7</td>
<td>2.4</td>
<td>-11.1</td>
<td>278</td>
<td>266</td>
<td>-4.3</td>
</tr>
<tr>
<td>Iᵥf</td>
<td>3.0</td>
<td>3.4</td>
<td>13.3</td>
<td>268</td>
<td>294</td>
<td>9.7</td>
</tr>
<tr>
<td>47</td>
<td>16.1</td>
<td>14.1</td>
<td>-12.4</td>
<td>1382</td>
<td>1182</td>
<td>-14.5</td>
</tr>
<tr>
<td>65</td>
<td>38.6</td>
<td>32.5</td>
<td>-15.8</td>
<td>5732</td>
<td>4841</td>
<td>-15.5</td>
</tr>
<tr>
<td>Iᵥe</td>
<td>35.3</td>
<td>41.8</td>
<td>18.3</td>
<td>9680</td>
<td>11602</td>
<td>19.9</td>
</tr>
</tbody>
</table>

¹ \(PBIAS = \sum \frac{(P_i - O_i)}{O_i} \times 100.0 \)

Results

- Runoff and erosion underpredicted for \(I_c \) rainfall events
- Runoff and erosion overpredicted for \(I_v \) rainfall events
- WWEM model predictions worsen with increasing rainfall intensity
Conclusions

- WWEM contains component-based erosion prediction technology that can easily be linked to existing models, e.g., RZWQM2
- Easily accessible code base for testing and improving WEPP hillslope erosion code
- Excellent academic tool for teaching students erosion prediction modeling fundamentals
- OMS3 provides a vehicle for transferring erosion prediction technology through new methods of delivery
Cloud Services Innovation Platform (CSIP)

- Implement Modeling Infrastructure for NRCS that is:
 - Cost effective (→ Cloud)
 - Highly interoperable
 - Component-based (→ OMS3)
 - Computationally scalable
 - Scalable for data (→ NoSQL)

- Prototype selected models via CSIP
 - RUSLE2, WEPP Hillslope …
RUSLE2 Mobile Smartphone Android Application

Manual Parameter Selection

Transect Definition

Location-Based Management Selection

Remote Model Execution of RUSLE2 in CSIP/OMS3

View RUSLE2 Model Results

USGS Elevation Service