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ABSTRACT 
The objectives of this paper are twofold. First, it 

compares the discriminatory power of qualitative expert 
judgements with actual soil losses to express class 
boundaries in physically measured, quantitative terms. 
Secondly, it investigates the properties of a postulated 
functional relationship between soil loss and readily 
available explanatory variables on both, their reliability of fit 
and behaviour. The study uses quantitative soil erosion data 
of runoff plots of the Soil Conservation Research Project in 
Ethiopia. Qualitative expert judgements on the state of 
erosion for the same runoff plots were obtained through a 
questionnaire. The study applies a non-parametric technique 
that uses a flexible method of curve fitting. The first exercise 
applies this technique to determine the quantitative 
boundaries (soil losses) of qualitative classes. The results 
reveal a positive relationship between erosion hazard 
assessment by the expert and actual soil losses, however, 
experts tend to overestimate. In the second exercise, the 
mollifier program is used to visualize non-parametric 
estimates in 3-D graphs that show non-linear relationships 
and reliability of the estimates. The results indicate that soil 
loss should be modelled separately for annual crops and land 
use types with a permanent coverage. Further findings show 
that annual runoff has an almost linear relation with annual 
soil loss. An index derived from monthly rainfall data and 
the adjusted Cooks’ method seems promising to represent 
the hydrological factor in the model. Most relations show a 
poor ‘goodness of fit’, which anticipates low correlation 
coefficients in future parametric, models and indicates that 
additional variables should be included.  

INTRODUCTION  
The detrimental effects of water erosion on soil 

productivity are particularly manifest in the least developed 
countries, where farmers are highly dependent on intrinsic 
land properties and unable to ameliorate soil fertility through 
application of purchased inputs. The highlands (above 1500 
m) of Ethiopia, which carry among the highest population 
densities in Africa, are an important case in point. These 
highlands constitute 43 per cent of the country and are 
endowed with a high soil fertility that account for 95 per 
cent of the cultivated area. Here soil losses may reach annual 
levels of 200-300 ton per hectare (Hurni, 1993, Herweg and 
Stillhardt, 1999) affecting 50 per cent of the agricultural 
areas (UNEP, unpublished data) and 88 per cent out of a 
total population of 60 million people. Moreover, the fast 

grow rate of population (2.2 per cent annually; World Bank, 
1998) causes a steady increase of the pressure on the land. 
Hence, there is an urgent need for policy interventions that 
arrest soil degradation and rehabilitate degraded areas. Since 
it is not possible to measure and experiment with soil 
erosion measures at every endangered spot in the country, 
spatial soil erosion models offer a vital tool in the design of 
these interventions. These models describe for every point 
on the geographical map the degree of soil erosion in its 
dependence on both biophysical conditions and actual land 
use practices and can be used to define options for 
sustainable land use. 

The early soil erosion models consisted of relatively 
simple response functions that were calibrated to fit a limited 
number of statistical observations (e.g. USLE, SLEMSA). 
The current trend is towards replacing these by far more 
elaborate process based models (e.g. Morgan et al., 1992; 
Nearing, 1989; Yu et al. 1997). However, in case of Ethiopia 
and many other developing countries the application of these 
process based models is not a practical proposition in view 
of their large data requirements. Moreover, these models are 
apparently not yet in an operational stage witness the often 
poor correlations between modelled and observed soil losses 
(e.g. De Roo et al., 1996; Bjorneberg, 1997; Bonari et al., 
1996; Klik et al., 1997, Littleboy et al.,1996 Quinton, 1997). 
One is thus confronted with the paradoxical situation that 
much effort is being invested in the development of soil 
erosion models that will eventually not be applicable to the 
locations where they are most urgently needed. To address 
this problem, alternative, qualitative procedures for land 
hazard assessment have been designed (e.g. Desmet et al., 
1995; Gachene, 1995; King et al., 1999) that are based on 
expert judgement and generate a relative ranking of the 
degradation status. Sonneveld and Albersen (1999) in turn 
include this information in an ordered logit model (as in 
Greene, 1991) that has the expert judgements as dependent 
variable and the soil, climate and land use characteristics as 
independent variables. This model was used to both test the 
consistency of expert judgements in relation to the 
explanatory factors and to reproduce a judgement 
corresponding to biophysical and land use conditions at sites 
for which no expert assessment is available. However, the 
ordered logit model has two basic limitations. It specifies the 
boundaries between ordered classes with a common 
judgement in an indirect way, as unobservable variables, and 
assumes a linear form for the effect of the explanatory 
variables. 



In this paper, both restrictions are being addressed. First, 
the discriminatory power of qualitative expert judgements is 
compared with actual soil losses. This enables us to express 
the class boundaries in physically measurable, quantitative 
terms. Secondly, the paper investigates the properties of a 
postulated functional relationship between different 
measurements of soil losses and a limited number of 
explanatory variables that are generally available in 
developing countries. The approach is to look via a flexible 
method of curve fitting for an expression of soil losses in 
combination with explanatory factors that yields a surface 
which is both sufficiently reliable in terms of fit, and 
sufficiently well behaved (e.g. linear or concave and 
smooth) to promise a successful mathematical formalization 
through an explicit parametric form. The flexible curve 
fitting is effectuated by the non-parametric technique of 
kernel density regression (e.g. Bierens, 1987). This 
technique allows for functional forms that follow the 
observed data closely, so as to reveal possible non-
linearities. Associated with it are descriptive statistics on the 
likelihood density of information at every site, the ‘fit’ and 
the error probability of the slope of the function. We apply 
the mollifier program (Keyzer and Sonneveld, 1998) which, 
among others, shows kernel density regressions as 3D-
graphs that map the dependent variable against the 
independent variable(s) for fixed values of other exogenous 
variables, while information on associated statistics is shown 
in colours or shading of the surface plot and a ground plane. 
This visual representation is especially practical to explore 
large data sets and to investigate the properties of 
relationships where, as in the erosion process, the factors at 
play are more or less known but little a priori information is 
available on the functional form to be adopted.  

The study uses classified and continuous data on soil and 
land characteristics and continuous data on precipitation, 
rainfall erosivity, runoff and soil loss as obtained by the Soil 
Conservation Research Project (SCRP) in Ethiopia. 
Qualitative observations on erosion hazard are derived from 
a questionnaire that was completed by one national and one 
international soil erosion expert, both associated with the 
project.  

The paper proceeds as follows. Section 2 describes the 
questionnaire and the compilation of the qualitative 
assessments as well as the data on explanatory variables. 
Section 3 briefly discusses the methodology of non-
parametric analysis. Section 4 reports on the quantitative 
interpretation of expert judgements. Section 5 gives a step-
wise introduction to the 3-D graphs as generated by the 
mollifier program and shows how it is used in the quest for a 
reliable and well behaved representation. Section 6 
concludes. 

Data sources 
SCRP data. The SCRP is co-ordinated by the Centre for 

Development and Environment, University of Berne in 
association with the Ethiopian Ministry of Agriculture. The 
present study uses the data from 28 runoff plots located at 
seven research areas, six in Ethiopia and one in Eritrea (Fig. 
1), that were collected by SCRP during the period 1982-
1993. The runoff plots had dimensions of 2×15 square 

meters and were bounded by galvanised sheets to prevent 
access of runoff from adjacent terrain. The plots were 
implemented in farmers’ fields and in this way made subject 
to their regular land management activities. Plots are 
selected to represent prevailing climate, soil and land 
characteristics of the research area.  

Qualitative data. Qualitative erosion assessments were 
obtained from one national and one international expert, 
involved in the SCRP who were asked to deliver their 
qualitative assessment of annual water erosion hazard for the 
28 runoff plots under the land use types and land 
management in the period 1982-1993, on a scale of five 
(1=no erosion, 2=slight, 3=moderate, 4=severe, 5=extreme). 
The first erosion class refers to a situation in which erosion 
has tolerable levels. Classes 2 to 5 represent an increasing 
magnitude of the impact of water erosion on an ordinal 
scale. Thus, class 3 is more severe than the expert makes 
class 2, but the interpretation of differences in extent of the 
erosion only. The experts were asked not to consult the 
historical soil loss records that were registered by the SCRP. 
Other information conveyed in the questionnaire included: 
name of research area, plot number, soil type, annual 
rainfall, slope and land management. 

Quantitative data. Quantitative data on erosion, land use, 
climatic, soil and land conditions were obtained as follows. 
For each plot, an erosion measurement was conducted in 
terms of runoff as well as soil loss while the land use 
information was collected through measurement of crop 
coverage, biomass and crop yield. For each research area, 
the climatic characteristics (rainfall, rainfall erosivity and 
temperature) were recorded and a detailed soil survey (app. 
1:10 000) was done at the start of the experiments that 
provided data on soil and land characteristics of the runoff 
plots.   
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    Figure 1  Location of SCRP research areas. 



Table 1. Land use and C-factor1. 
Sole 

Cereals  Sole pulses/ 
potato  Associated crops  Perennials  Rangeland  

crop C-factor Crop C-factor crop C-factor Crop C-factor Grass C-factor 
barley 0.452 field pea 0.315 sorg/maiz/bean 0.250 coffee 0.210 grass 0.00945 
maize 0.291 haricot bean 0.355 haricot b./barley 0.160 bushland 0.150 bush/gras 0.00100 

niger seed 0.604 horse bean 0.246 maize/haricot b. 0.250     
sorghum 0.206 lin seed 0.483 barley/field pea 0.250     

teff 0.337 lentil 0.388 barley/horse b. 0.250     
wheat 0.477 sweet potato 0.350 Barley/lupine 0.250     

    emmerw./horseb 0.250     
    field pea/horseb. 0.250     
    gras/sorg/har. B. 0.250     

    hor.b./field p./ 
maize/sorgh. 0.250     

    horse b./field p. 0.250     
    horseb/emmerw. 0.250     
    maize/lentil 0.250     
    maize/sorgh./teff 0.250     

    sorghum/ 
sorghum 0.250     

    sorghum/har. B. 0.250     
    sorghum/potato 0.250     
    sweet pot./barley 0.250     
    teff/teff 0.250     
    wheat/wheat 0.250     
    barley/barley 0.250     
    maize/maize 0.250     
    sorghum/har.b. 0.250     

    sorghum/maize/ha
r.b. 0.250     

    wheat/barley 0.100     
C-factors in black are calculated and C-factors in blue are based on assessments and published literature (Morgan, 1995; Lal, 1995) emmer. 
w.= emmer wheat,  har.b.,= haricaot beans,  horse (hor.) ), b.= horse beans. 
 
 
 

Limited data set. To construct the version of the erosion 
model, which is based on the limited data set, we use readily 
available data that are found in the regular natural resource 
databases. We also generate data from existing and already 
parameterized models. 

Crop cover index. The crop cover plays a central role in 
the erosion process. To measure the average crop cover 
index we apply a model calculation rather than using the 
underlying statistical data. This enables us to take advantage 
of the structural information in our non-parametric analysis 
and to reduce the number of variables. More specifically, we 
compute the C-factor of the RUSLE model on the basis of 
the observed crop coverage, sub-surface and surface 
coverage and soil roughness according to the Renard et al. 
(1997) and data from the literature (Morgan, 1995, Lal, 
1995). Table 1 shows the land use types that were cultivated 
in the SCRP plots and their average C-factor. 

Hydrology. For the hydrological component of the 
erosion process three variables were compiled. First, we 
calculate the Modified Fournier Index (MFI: the sum of the 
squares of monthly rainfall divided by the total annual 
precipitation (Arnoldus, 1981)). The MFI seeks to measure 

the seasonal variability in rainfall erosivity. Secondly, we 
compute the R-factor of the (R)USLE model, which is based 
on a continuous rainfall registration and calculated based on 
the maximum 30-minute rainfall intensity and total amount 
of rainfall in one shower. Finally, we include the measured 
annual runoff.  

Topography. A single continuous function for the slope 
gradient (Nearing, 1997) is applied to translate the influence 
of the topography on the soil erosion process. This function 
generates an “LS-factor”. To translate this factor for 
rangeland conditions, we follow Renard et al. (1997).  

Soils. Concerning soil data the following variables are 
selected: silt content, organic matter, phases, abrupt textural 
change, and drainage class. Theoretical evidence that these 
factors play an important role in the erosion process can be 
found in Morgan (1995) and Lal (1990).  

The Mollifier program: 3D-visualization of kernel 
density regressions 

This section provides some background on the non-
parametric analysis by kernel density regression. A more 
detailed specification is given in annex I. 



Mollifier mapping. The mollifier mapping is defined as 
the following stochastic model: 

 ))x(R(Ey ε+=  (1) 
where y is the observed soil loss, x is a vector of 

explanatory variables and ε denotes measurements errors in 
x. The function R(x+ε) is the unknown erosion function, and 
the mollifier mapping is the expected value of this function. 
For an infinite sample of observations spread evenly over the 
domain of x, it would be possible to evaluate this expected 
value.  However, in practice the value of y must be estimated 
given a finite sample of size S1. For this, one can use the 
Nadaraya-Watson kernel density estimator:  

 (x)Py=(x)y~
s s

s∑  (2) 
where ys and xs denote observations. Thus, the estimate 

is a probability weighted sample mean. The probabilities are 
computed on the basis of the distance of xs from the given 
point x, attributing higher weight to nearby points. The 
probability is calculated on the basis a postulated density 
function (the kernel) for ε whose spread is controlled by the 
window size parameter θ. We suppose that all the elements 
of ε are independently and normally distributed. For small 
samples, a misspecification of this density will affect the 
estimate but this effect disappears as the sample size 
becomes larger.  

Mollifier program. The mollifier program offers the 
possibility to exhibit the estimated ~y(x)  in 3-D graphs as a 
surface plot or blanket against two independent variables on, 
say, a 50×50 grid, while controlling for other explanatory 
variables by setting them, say, at their sample mean. In the 
default mode the program generates a colour shift in the 
surface plot to reflect the likelihood ratio of the observation 
density, which measures the number of observations on 
which the function evaluation is based at that point. The 
colours in a ground plane below the surface plot shows the 
probability of the actual y falling within a prescribed interval 
around the mollifier mapping, whose upper and lower 
bounds are specified as a percentage (default = 10) of the 
sample mean y . However, the statistical information can be 
exchanged for other ‘mollified’ covariates to identify their 
location in the selected dimensions. 

The mollifier assesses the partial derivative of the 
regression curve as well as a measure of reliability for it. For 
this, it calculates the first partial derivative to kx at point x, 
where k represents an explanatory variable, at all data points. 

                                                           
1The minimum sample size for a relative mean square error 

( ) 1022 .y/yy~E ≤−  are for 2 independent variables S=5; for 3 
independent variables S = 67 for 4 independent variables S = 223 
and for 5 independent variables s = 768  (Silverman, 1986). Note 
that these samples sizes hold for regression in the full dimensions 
of the independent variables, while the mollifier figures are based 
on two (visual) independent variables and conditioned values of 
other independent variables. Consequently, for mollifier pictures 
where the number of independent variables is larger than 2, the 
sample size S is always smaller to attain the accuracy indicate 
above.  
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The mollifier program uses the band (or window) width 
as a control variable to specify the neighbourhood of x 
whose points affect the prediction of y~ . The user can vary 
the window size relative to a benchmark (optimum) level 
defined by: 

  4+d
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with n being the number of observations and d being the 
number of exogenous variables (Silverman, 1986). If the 
averaging should emphasise nearby points, the window size 
should be small. The larger the window size, the tighter the 
blanket and the less it will follow the profile of observations. 
We will keep the window size at its benchmark level.  

Quantifying the class boundaries of a qualitative 
assessment 

Fig. 2 indicates how much actual soil loss corresponds to 
the qualitative assessment by experts, with the x-axis values 
1 =  ‘no erosion’,  2 = ‘moderate erosion’, .. 5 = ‘very severe 
erosion’. As the figure shows, a wide range of soil losses can 
be observed for each of the qualitative classes, few 
observations belong to the classes 2 and 5, in classes 3 and 4 
most observations lie in the lower range and, finally, the 
means by class are increasing, as could be expected.  

In Fig. 3, the black line is the kernel density regression or 
mollifier curve for the five classes. This line is increasing, 
just like the class means of Fig. 2. The upper line is an 
estimate of the probability of a deviation by more than 10.7 
units (i.e. 20 per cent of the sample average) from the 
mollifier curve. The probability of error increases steeply 
after class 1, due to the areas, which received a high rating 
but where, no actual soil loss was observed. Table 2 gives 
the class boundaries at midrange between the class values 1-
5 of the individual experts and their combined assessments. 
The upper boundary of the first class of expert 1 is at eight 
units, which corresponds remarkably well with the often-
assumed threshold values for sustainable development 
(Morgan, 1995). Expert II gives a value, which is somewhat 
 

 
Table 2. Class boundaries of qualitative assessments 

Class Expert I Expert II Combined 

No erosion 0-8 0-19 0-14 
Slight >8-32 >19-27 >14-28 
Moderate >32-75 >27-71 >28-74 
Severe >75-102 >71-134 >74-114 
Very Severe >102 >134 >114 
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Figure 2. Measured soil loss by class 

 
 
 
 

Figure 3. Kernel density regression of soil by class: mean value 
and probability of error 

 
 
 
 
 

Table 3. Hit ratio between expert and observed classifications. 
Expert 

o  1 2 3 4 5 Total 
b 1 74 39 36 22 1 172  
s 2 8 11 15 6 1 40  
e 3 7 14 27 24 2 74  
r 4 0 1 2 6 0 9  
v. 5 1 2 6 52 19 80  
 Total 90 67 86 110 22 375 

 
 

higher. Further, we notice that the upper thresholds of 
classes 2 and 3 are almost the same but for class four we 
observe a difference of 30 ton per ha per year.  

Next, now the class boundaries have been estimated it 
becomes possible to compare the actual observation of the 
soil loss with the judgement of the expert. We will do this 
for the combined assessments of both experts and classify in 
table 3 their classifications against actual observations. The 
cells on the diagonal contain the observations that agreed 
137 in total (or 37 per cent of the cases). In the 145 instances 
(38 per cent) above the diagonal the expert over-estimated 
the losses and in 93 instances (28 per cent) the converse was 
true. With respect to the size of the error it may be noted that 
the majority of the underestimations are one class lower than 
the observed soil loss class. We also notice that the hit ratio 
is high for class 1. Further we observe that the experts 
classified many cases higher than the class 1, whereas in fact 
the soil loss did not exceed its upper boundary. Class 4 has 
many underestimations but together classes 4 and 5 perform 
better with 189 correct classifications (50 per cent), 41 
underestimations (11 per cent) and 145 overestimations (39 
per cent). 

Explaining soil erosion with a limited data set  
This section presents results from kernel density 

regressions that seek to explain soil erosion based on a 
limited set of explanatory variables. Our criteria for 
eventually selecting a specification are: (a) reliability: 
probability of error in soil loss and probability of wrong sign 
for derivative, (b) regularity: monotonicity of the 3D-planes 
monotonic as well as concavity, convexity, or both (i.e. 
linearity); this eases subsequent parametric estimations, but 
more importantly, it suggests that the explanatory factors can 
indeed capture the fundamentals; in contrast, if the planes 
are bumpy, there are presumably unspecified factors at play 
which cause multiple changes in slope and curvature; and 
finally (c) availability of explanatory variables. The 
presentation starts with a stepwise introduction of the 3-D 
graphs as generated by the mollifier program, and then turns 
the search for a suitable specification. 

Introducing the Mollifier Graphs 
Scatter plot of rainfall erosivity (MFI) and 

topography factor  
Fig. 4 is a three-dimensional scatter plot of the observed 

soil loss (ton per ha per year) against a rainfall erosivity 
index and a topography factor. The rainfall erosivity is 
represented by the Modified Fournier Index (MFI) while the 
influence of the topography on the erosion process is 
represented by the LS-factor that measures the influence of 
the slope gradient on the erosion process2 The limitations of 
the presentation by such a scatter plot are evident: it is 
difficult to infer any relationship between the variables and it 
is not possible to control the relationship for other aspects 
such as soil factors and land use. 

                                                           
2 Sensitivity tests showed that the estimated values of the 

dependent variable were robust for the C-factor values derived 
from the literature. 

0

50

100

150

170

Expert
estimation

1 2 3 4 5

0.2

0.4

0.6

0.8

1.0

Soil Loss
(t.ha-1 .yr-1 )

Prob .of
E rror

 

Soil 
loss (ton



  

 
Figure 4.  Scatter plot of  soil loss against Modified Fournier Index (MFI) and topography. 
 
 
 

 
Figure 5.  Soil loss against rainfall erosivity (MFI) and 
topography (LS-factor). 

 

 

 
Figure 6.  Soil loss against rainfall erosivity  (R-factor) and 
(LS-factor). 
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Figure 7. Soil loss against MFI and LS-factor. Covariates Likelihood ratio and probability of error. 
 
 

 

 

Figure 8.  Annual soil loss values against MFI and LS-factor:  
Covariates expert classifications and land use groups. 



Mollified surface plot of rainfall erosivity (MFI) 
and topography factor 

Fig. 5 shows the surface plot of the estimated mollifier 
mapping with soil loss values regressed against topography 
and rainfall erosivity, while being conditioned (mean) values 
of two soil erodibility factors (organic matter and drainage) 
and land use coverage factor (C-factor of the USLE)3 Notice 
that the figure has been rotated a 150 degrees from its point 
of origin. We see that for the lower to middle slope range, 
the soil loss increases more or less linearly at higher rainfall 
erosivity values but the curve drops for the lower slope 
values and forms a plateau for the higher ones. For the 
highest slopes, the relationship between erosivity and soil 
loss seems to be weak. The curve shows several bumps 
instead of the monotonic rise that could have been expected 
on theoretical grounds. Unexpected is also the reduction in 
soil loss for the highest slope values in the middle range of 
rainfall erosivity. 

Replacement of rainfall erosivity by R-factor 
The frail relationship between soil loss and its 

explanatory variables might in part be due to the use of the 
MFI instead of a more advanced and accurate variable such 
as the R-factor of the RUSLE model. However, as shown in 
Fig. 6, replacing the MFI by the R-factor does not make the 
relationship better behaved. This holds especially at higher 
R-factor values. The descending trend for higher LS-factors 
remains and the number of bumps stays large. Therefore, we 
return to the MFI as a measure of rainfall erosivity. 

Complete mollifier picture  
We add now to the mollifier curve of Fig. 5 descriptive 

statistics on the likelihood ratio of the observation density 
and on the probability of error (Fig. 7). The likelihood ratio 
is depicted through a colouring of the surface plot while the 
reliability of the estimate for a 20 per cent deviation (11 ton 
per ha per year) of the mean for the co-ordinate is reflected 
in the colouring of the ground plane. The legends of the 
likelihood ratio and reliability appear on the upper right and 
lower left side, respectively. The class boundaries for the 
colourings are found at the outside of the legend, while the 
histograms measure the percentage of total area in every 
class. It appears that the likelihood ratio of the density of 
observations is high at two places: at the higher range of the 
topography and lower rainfall erosivity values and at the 
lower topography values and the middle range of the 
erosivity values. This is where most observations are 
concentrated. In the area with high rainfall, erosivity and 
high slope gradients observations are relatively few. We also 
notice the scattered reliability pattern in the ground plane, 
with highest probability of error in the lowest reliability 
classes.  

Land use and expert classification as covariates 
The unexpected reversed effect of the topography 

deserves some more attention. In Fig. 8, we introduce the 
                                                           
3 Sensitivity tests showed that the estimated values of the 
dependent variable were robust for the C-factor values derived 
from the literature. 

land use as a covariate in the plane to locate their appearance 
in relation to rainfall erosivity and topography. For this 
purpose the land use was subdivided into two groups with 
similar temporal and spatial development of the leaf area 
and, hence, resembling soil coverage features: annuals (sole 
cereals, sole pulses, associated annual crops) and perennials 
(coffee and grasses). The colour shift clearly depicts that 
perennials are cultivated at higher slope gradients and higher 
rainfall values while the annuals are cultivated in the middle 
and lower slope gradients Obviously, the coverage of 
perennials annuls the expected topography effect on soil 
erosion and the calculated C-factors do not compensate the 
estimation of expected soil losses. The expert classification 
is depicted as a covariate in the surface plot and follows the 
contour lines of soil loss values for the higher ordered 
classes.  

Location of soils 
As regards soil-related characteristics, it must be stressed 

that the soil surveys were conducted at the inception of the 
erosion trials and that therefore the soil data can be safely 
treated as explanatory factors since they are not the result of 
the recorded soil losses. For a first orientation, we show 
through the colouring of the ground plane in Fig. 10 the soils 
that were identified in the database. The prevalence of 
Luvisols, Nitisols, Phaeozems and Regosols is clear, while 
Lithosols and Andosols are next in importance. Yet we do 
not find any clear correspondence pattern between soil loss 
and soil types. 

Relation with aggregate stability and organic 
matter  

Typical soil characteristics that play an important role in 
the erosion process are aggregate stability of soils and 
organic matter content. The aggregate stability is a main 
determinant of the sensitivity to detachment and entrainment 
and the organic matter plays a crucial role in the structure 
formation of soils and increases the resistance against the 
dispersive forces of rainfall and runoff (Lal, 1987). In Fig. 
11 we depict the aggregate stability as assessed in the field 
and the organic matter content as determined in the 
laboratory. Stability appears as a covariate in relation to 
rainfall erosivity and topography in the surface. Organic 
matter is now calculated as a covariate in the ground plane 
and was for the regression removed form the dependent 
variables to avoid a problem of endogeneity. The resulting 
patterns for covariates more or less confirm theoretical 
expectations. Soil losses are highest for the weakest 
aggregate stability and increase gradually as the organic 
matter content diminishes. However, soils with a strong 
aggregate stability classification also record high losses, 
while the relation with the moderate stability class is also not 
equivocal.  

Replacement of MFI by annual runoff and 
introduction of silt fraction as covariate  

Another important soil component related to the 
erodibility of the soil is the silt fraction (particle size 0.002-
0.05 mm).  

 



 

 
 

Figure 10. Annual soil loss values against MFI and LS-factor. Covariates: location of soils and likelihood ratio. 

Figure 9.  Soil loss values against MFI and LS-factor for annual  crops.  
Covariates: likelihood ratio and probability of error 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

Figure 11. Annual soil loss values against MFI and LS-factor.  
Covariates: aggregate stability and organic matter 

Figure 12. Annual soil loss values against annual run-off and LS-factor. 
Covariates: silt percentage and likelihood ratio. 



 

Figure 13.  Annual soil loss values against annual run-off and LS-factor.  
Covariates: silt percentage and likelihood ratio. 

Figure 14. Annual soil loss values against annual run-off and LS-factor.  
Covariates: probability of wrong sign of 1st derivative for run-off and organic matter. 



High percentages of silt makes the soil more erodible 
compared to soils with coarser of finer soil particles. The 
coarser (sand) are resistant to detachment because of their 
weight while the finest soil particles (clay) in combination 
with organic material withstand erosive forces because of 
their adhesive and chemical binding and formation of clods. 
Soils, which contain a lot of silt, like sandy loam or loamy 
sand textured, also have a greater tendency to seal. The fine 
silty particles block the pore spaces, obstruct water 
infiltration and elevate the runoff. Therefore, we introduce 
the silt fraction as a covariate in the surface plane in relation 
to the visual dimensions while the MFI is replaced by 
another hydrological component, the amount of annual 
runoff.  

Fig. 12 shows an almost linear relationship between total 
annual runoff and soil loss for all slope ranges. The soil loss 
and runoff remains constant in the lower and middle slope 
range, and for the higher slope range the soil losses increases 
somewhat. The colour pattern of the silt content confirms its 
relation with soil erodibility. Soils with the highest silt 
content show the highest soil losses while the losses 
diminish gradually with the silt content. 

Limited soil depth and drainage 
Other soil factors that are likely to influence the runoff 

are limited soil depth and drainage. Soils with a limited 
depth have a restricted storage capacity and initiate overland 
flow earlier than deeper soils. We define in this study the 
soils with a limited depth (1) when they are classified as 
Lithosols, (2) soils that possess an Abrupt Textural Change 
(FAO, 1997) and (3) when they posses a Lithic or Petric 
phase within the upper 50 cm of the soils. Soil drainage in 
the database was given a qualitative classification (FAO, 
1997) and later aggregated in three classes ‘rapid’ ‘well’ and 
‘poor’. Fig. 13 uses the same set of explicit and conditioning 
explanatory variables as the previous Fig. (12). It shows that 
only few soils in the sample possess an obstructive layer and 
that their correlation with the runoff is ambiguous. In 
addition, the qualitative classes for soil permeability show a 
weak correlation except for the highest runoff at the low 
slope ranges where high soil losses are recorded.  

Reliability of slope direction 
Next, we evaluate the reliability of the slope of the 

regression curve in Fig. 12 and 13 by plotting the probability 
of having a slope with an opposite sign as a covariate. We do 
this for the two factors: the runoff (surface plot) and organic 
matter content. 

We notice in Fig. 14 that especially for the higher 
topography (LS) values the reliability of the slope sign of the 
runoff variable is low. The low reliability occurs around data 
points where the figure is somewhat bumpy and where it 
tends to descend. The reliability is much better elsewhere. 
For organic matter the slope sign has a higher reliability as 
can be seen by comparing the histogram on the left bottom 
with that of the upper right. 

Runoff index for monthly precipitation 
We now come to the final step of our exploration.  As 

data on runoff are not commonly available, several 

procedures have been developed in the literature to estimate 
the runoff as a percentage of the rainfall. Here we calculate a 
runoff coefficient (CC) based on Cooks’ method adjusted for 
African conditions (Hudson, 1986 p. 116), which only relies 
on readibly available data, i.e. on a broad categorization of 
land use types, soil type and drainage and slope. The CC was 
applied on monthly rainfall data and led to the following 
coefficient for yearly runoff (RI): 

∑

∑ ×
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=

=
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12
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i
i

i
i
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PCC
RI  

where Pi is the monthly rainfall and the subscript, i denotes 
the month.   

The results are shown in Fig. 15 where the RI is depicted 
as a covariate in the surface plot and the contour lines in the 
ground plane measure soil loss. The colour shift in the RI-
classes appears to follow the contour lines on the surface 
plot except in its upper middle range. This suggests that this 
variable might be an appropriate predictor for the soil losses. 

CONCLUSIONS 
In this paper, we have applied non-parametric regression 

to conduct two separate exercises. The first is a quantitative 
interpretation of expert assessments that compares the 
qualitative but ordered classes of expert judgements with 
quantitative observations on soil losses. The second 
develops a functional form for estimating soil losses based 
on a limited set of data. 

From the first exercise, we reveal a positive relationship 
between the erosion hazard assessment by the expert and the 
actual soil loss, though the reliability of this relationship 
becomes limited for higher classes, due to the wide range of 
observed soil losses. This possibly happens because experts 
tend to base their opinion on long term effects that would 
prevail under the existing conditions of rainfall, soil type, 
slope and land use, whereas annual soil losses might depend 
on a few showers in combination with a low soil coverage 
(Herweg and Stillhardt, 1999), which are not conveyed by 
the general data in the questionnaire. The analysis of the hit 
ratio shows that the experts give a reasonable assessment of 
the erosion risk hazard. It can even be classified as good if 
classes four and five are aggregated but experts tend to 
overestimate soil losses.  

After a stepwise introduction of the mollifier 
methodology (Fig. 4-8), the second exercise proceeded in 5 
steps. It was seen (Fig. 9) that soil loss should be modelled 
separately for annual crops and land use types with a more 
permanent coverage (grass and perennials). The MFI seems 
a better factor to represent the rainfall erosivity than the 
more advanced R-factor (Fig. 5, 6, 10), moreover it has the 
advantage that it can be composed from data that are readily 
available in Ethiopia. However, its surface plot shows 
several irregularities. Remarkably, the total annual runoff 
has an almost linear relation with annual soil loss (Fig. 12-
14). The index derived from monthly rainfall data and the 
adjusted Cooks’ method seems promising (Fig. 15) to 
represent the hydrological factor in the model and it is easily 
calculated with readily accessible data on monthly 



 

 
 

rainfall. The soil characteristics silt percentage and organic 
matter content showed (Fig. 11 and 12) a clear relationship 
with the estimated soil loss. We further noticed that 
observation densities around the highest values of the MFI, 
R-factor and runoff and the LS-factor are low and the 
visualized relationship in this area may therefore be less 
reliable. Also the poor ‘goodness of fit’ anticipates low 
correlation coefficients in future parametric models and 
indicates that additional variables should be included if a 
reliable model is to be obtained. This might particularly be 
the case for different land husbandry measures that were 
taken by the farmer and which are now included in a single 
C-factor. Another reason is the strong influence of extreme 
events in the erosion process that are not represented by the 
selected readily available data, which by definition excludes 
their high temporal resolution. 

A disadvantage of the non-parametric method is that it is 
“weak on theory” in that the resulting regression curve is 
shaped according to the data and not according to imposed 
theoretical properties of functions.  This may not always 
confirm the a priori’s of the modeller and experts. Therefore, 
the next step in this research will be to estimate a parametric 
model that uses (easily available) expert judgements and 
(scarce) real valued observations of soil loss as a dependent 
variable and a limited number of explanatory variables as 
independent variables.  
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Annex 1 
 

Further background on the mollifier  
Let us start the explanation of the mollifier method by 

considering a given data set S of real-valued observations 
indexed s, and partition it into a vector of a vector of n 
(bounded) endogenous variables yS and a vector of m 
exogenous variables xS from the bounded set X. The mollifier 
calculates a value y(x) at intermediate points x, thus creating a 
blanket that fills the gaps between the observations. The 
mollifier uses for its estimation a weighting function wS(x) 
that equals the probability PS of yS being the correct value of 
y(x). This means that errors have to be accounted for and 

relaxes the requirement of conventional interpolation 
methods to let the curve pass through the observations. The 
resulting specification will be: 

 ( ) )x(Pyxy~ s
s∑=  (1) 

This defines a non-parametric regression function, whose 
shape will depend on the postulated form of the probability 
function. For example, if yS is a scalar and xS a two-
dimensional vector of ground co-ordinates, every 
observation s can be viewed as a pole of height yS located at 
point xS. The regression curve lays a “soft blanket” on these 



poles that absorbs the peaks of the highest poles (upward 
outliers) and remains above the lowest poles. The analytical 
form of the probability function PS(x) of this model can be 
obtained in various ways. Here we will apply the mollifier 
approach. 

For a finite sample of size S, the value of this mollifier 
function (1) can be estimated by a Nadaraya-Watson 
estimate i.e. a weighted sample mean with window size θ as 
parameter: 

 (x)Py=(x)y~ s s
s∑  (2a) 

for 
)x()/x(x=(x)P ss

s Ψ− θψ  if 0>)x(sΨ and 0 otherwise  (2b) 
where 

 )/)x(x(=)x(
S

s

ss θψ∑ −Ψ
=1  (2c) 

and where the density function ψ(ε; θ) has its mode at 
ε=0 and is such that for θ going to zero its support goes to 
zero. 

In this approach, expression )x(xs −ψ in (2c) can be 
interpreted as the likelihood of x being associated to the 
observation s and (x)SΨ  the likelihood of x being associated 
to any of the observations in the sample. Hence, probability 

(x)Ps  is the probability of x being associated to observation 
s, conditional on its association to at least one observation in 
the sample and (x)y~s  is the expectation of the ys-values 
associated with the sample. We also define the likelihood 
ratio 

 ∑∑ −Λ
S

1=s

S

1=s

s )())/x((x=(x) 0ψθψ  (3) 

as well as the probability Q(x;a)  of y falling outside a 

given range ya α=  around Ψ s (x) , where y  is the sample 
average: 

 ∑
∈ a)S(x;s

s )x(P=)a;x(Q , for 



 ≥−= a(xy~ys)a;x(S s

 (4) 

This probability serves as a measure of fit.  
The mollifier program also assesses the partial derivative 

of the regression curve as well as a measure of its reliability. 
For this, it calculates the first partial derivative to x k at point 
x, where k represents an explanatory variable, at all data 
points. 
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where y t  refers to the tth observation. As by definition, 
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Let us now rewrite and interpret the term in square 
brackets. 
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Now for a density 
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normal joint density with diagonal variance matrix and 
variance σ k

2 around x t  it follows that  
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Hence the term in square brackets can be rewritten as 
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In other words, the term in square brackets is the 
contribution of observation s to the slope. 

For given x t this enables us to define the probability of a 
positive sign for the slope as 
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Hence the probability of a wrong sign can be calculated 

as  
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