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ABSTRACT 
This paper reports the application of fuzzy logic-

based modeling (FLBM) to improve the performance of 
the Revised Universal Soil Loss Equation (RUSLE). The 
FLBM approach was to make the RUSLE’s structure 
more flexible in describing the relationship between soil 
erosion and RUSLE factors and in dealing with data and 
model uncertainties while not requiring any further 
information. The approach used in this study consists of 
two techniques: multiobjective fuzzy regression (MOFR) 
and fuzzy rule-based modeling (FRBM). First, MOFR 
was used to derive the relationship between soil loss and 
a combination of RUSLE factors. These MOFR models 
were in turn linked together in a FRBM framework. 
Then these fuzzy rules were applied to adjust the RUSLE 
prediction corresponding to each combination of RUSLE 
factors.  

The Nash-Sutcliffe model efficiency of the fuzzy 
model on a yearly basis was 0.70 while RUSLE's was 
0.58. On an average annual basis, the efficiency was 0.90 
and 0.72 for the fuzzy model and RUSLE, respectively. 
With several good characteristics, the FLBM approach 
can be used to improve the performance of RUSLE with 
little effort and modification to the existing RUSLE 
model. 

INTRODUCTION 
This paper reports the application of fuzzy logic-based 

modeling (FLBM) to improve the performance of the 
Revised Universal Soil Loss Equation (RUSLE). For the 
purpose of conservation planning, the prediction accuracy of 
RUSLE is very important in making sound decisions on how 
soil should best be protected from erosion. However, an 
analysis of over 1700 plot-years of data, taken from more 
than 200 plots at 21 sites in the U.S., showed that soil 
erosion was not adequately described merely by the 
multiplication of six RUSLE factors in all cases. For 
instance, data indicated that the relationship between rainfall 
erosivity factor (EI) and soil loss, when other RUSLE 
factors were held constant, was not always linear. The aim 
of the FLBM approach was to make the RUSLE’s structure 
more flexible in describing the relationship between soil 
erosion and RUSLE factors and in dealing with data and 

model uncertainties while not requiring any further data. The 
paper is organized as follows – RUSLE and its limitations 
are discussed in the next section. Data and methodology are 
presented in the section 3. Section 4 is devoted to results and 
discussion followed by conclusion in the last section. 

The Revised Universal Soil Loss Equation 
RUSLE is an empirical equation derived from a large 

amount of field data and has been widely used as an erosion 
prediction and conservation planning tool in the U.S. as well 
as worldwide. The model computes soil erosion using values 
representing major factors influencing erosion, including 
climate erosivity, soil erodibility, topography, and land use 
and management. Keeping the same format of the Universal 
Soil Loss Equation (USLE), RUSLE is expressed as follows: 

A = R K L S C P 

Where A is the mean annual soil loss (t ha-1); R is the 
rainfall and runoff erosivity (MJ mm ha-1 h-1); K is the soil 
erodibility factor (t ha h (ha MJ mm)-1); LS is the combined 
dimensionless slope length and slope steepness factor; C is 
the dimensionless cover-management factor, and P is the 
dimensionless supporting practices factor.  

The rainfall and runoff factor (R) is the average annual 
total of the storm EI values, which equal the total storm 
energy (E) times the maximum 30-min intensity (I30). The 
relation between soil losses to the EI parameter was assumed 
to be linear (Renard et al., 1997). Compared to USLE, 
RUSLE included more precise values of R for the western 
half of the United States; and more corrections, more refined 
smoothing, and the filling of data gaps for the eastern United 
States (Renard et al., 1997). 

Generally K in RUSLE was computed in a similar 
manner as in USLE. The difference of K between the two 
models is an adjustment added in RUSLE to take into 
account seasonal changes, such as freezing and thawing, soil 
moisture and soil consolidation (Renard et al., 1994a). On 
the other hand, compared to USLE, LS in the RUSLE was 
refined by assigning new equations based on the ratio of rill 
to interrill erosion and accommodating complex slopes 
(Renard et al., 1994b). 

The C factor in USLE was computed based on cropping 
sequence, surface residue, surface roughness, and canopy 



 

cover, weighted by the percentage of erosive rainfall during 
the six crop stages. Compared to USLE, RUSLE included 
some more factors in determining C, such as prior land use, 
canopy cover, surface cover, surface roughness, and soil 
moisture. However, the key difference in computing C 
between the two models is the use of time-varying 
computation with a 15-day interval in RUSLE (Renard et al., 
1997), which was considered a major improvement in 
estimating soil loss (Renard et al., 1994b). 

P in RUSLE, which was also considered more advanced 
than those in USLE, was computed with a combination of 
empirical and process-based erosion technology, based on 
hydrologic soil group, slope, row grade, ridge height, and the 
10-year single storm erosion index value (Renard et al., 
1997). A complete description of all RUSLE factors can be 
found in USDA Agricultural Handbook Number 703 
(Renard et al., 1997).  

Risse et al. (1993) carried out a comprehensive analysis 
to assess the error associated with the USLE. Results from 
this study showed that the overall Nash-Sutcliffe model 
efficiency was 0.75 on an average annual basis and 0.58 
when compared on a yearly basis. These values are 
considered reasonable as the same data set showed an annual 
erosion variability of ±35% between replicated plots (Yoder 
et al., 1998). However, looking at more detail, USLE over 
predicted soil loss on plots at low erosion rates while 

underpredicted for plots at high erosion rates.  
Relying heavily on Risse et al.’s work and using data 

from the same sites and the same periods, Rapp (1994) 
found a similar result for RUSLE with a model efficiency of 
0.73 on an average annual basis and 0.58 on a yearly basis. 
Similar to USLE, RUSLE tended to overpredict on plots 
with low erosion rates and under predict on plots with high 
erosion rates. For this similarity in performance of USLE 
and RUSLE, Yoder et al. (1998) explained that RUSLE was 
developed from the basic USLE for the purpose of extending 
its application rather than increasing its predictive accuracy 
for normal cropping situations. As a consequence, they 
would be expected to provide a similar degree of accuracy. 

With more data and many improvements, RUSLE was 
considered scientifically superior to USLE (Renard et al., 
1994b). Consequently, it was expected that RUSLE would 
perform better than USLE. However, this was not the case as 
presented above. Besides the issue of data limitation, the 
relatively moderate performance of RUSLE can be attributed 
to several theoretical problems. First of all, to make the 
model more practicable, runoff, an important factor to which 
soil loss is closely related, was not explicitly dealt with but 
incorporated within the R factor (Morgan, 1995). On the 
other hand, although soil losses are directly proportional to 
the EI parameter, this relation is generally nonlinear. 
Scattergram of soil losses versus EI values at barley sites in  

 

 
Figure 1. Measured and RUSLE-predicted soil loss versus EI values for barley sites. 
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Figure 2. Expected accuracy of the RUSLE and the fuzzy model for different categories of 
measured soil loss (ton/acre) on a yearly basis; (a), <1; (b), 1-5; (c), 5-10; (d), 10-20; and (e), >20. 

 
Figure 1 illustrates this point. Perhaps the linear assumption 
in the RUSLE is only applicable within a certain range but 
not the whole scope of all EI values. With the structure of a 
simple multiplication of several factors, RUSLE, however, 
cannot accommodate such a nonlinear relationship.  

Another theoretical problem is that the interdependence 
between different factors is quite considerable. For instance, 
the relationships between L and S in USLE were derived 
from soil-loss measurement from mostly medium-textured, 
poorly aggregated surface soils (Wischmeier and Smith, 
1978). These relationships, in turn, were used to determine K 
values. As a consequence, errors and shortcomings from 

these relationships would carry over into K (Renard et al., 
1997). There is also a similar problem for the rainfall 
erosivity factor R (Wischmeier and Smith, 1978). 

Furthermore, interactions between K and C caused 
problems in delineating values of these two factors (Renard 
et al., 1997).  

DATA AND METHODOLOGY 
Data 

The data set used in this study was obtained from Rapp 
(1994). It was originally supplied by the USDA-ARS 
Southwestern Watershed Research Center, containing year-



 

by-year information of over 1700 plot-years from more than 
200 individual plots at 21 sites. It included previously 
determined USLE factor values, crop types and yields, and 
rotation sequences for each year and the plot dimensions. 
The number of plots and duration were different from site to 
site. The average is nearly eight years per plot for all 21 
sites. Many plots had duplicated measurements to take into 
account the natural variability of soil loss. With the original 
data set, Rapp (1994) used the RUSLE computer program to 
identify the RUSLE factor values by providing all necessary 
information to the program. This data set is considered 
reliable since this work was supervised by Ken Renard, the 
team leader of the RUSLE project. The complete data set as 
well as a list of sites with individual plot conditions can be 
found in Rapp (1994). 

Methodology 
As analyzed in the previous section, the RUSLE had 

several problems related to model structure and parameters. 
To make the RUSLE’s structure more flexible in describing 
the relationship between soil erosion and the RUSLE factors, 
and in dealing with uncertainties of parameters, while not 
requiring any additional information, a FLBM approach was 
applied. This approach includes two techniques: multi-
objective fuzzy regression (MOFR) and fuzzy rule-based 
modeling (FRBM). 

A fuzzy rule-based model comprises several single fuzzy 
rules. Each fuzzy rule generally consists of a set of fuzzy 
set(s) as argument(s) Ak and a consequence B also in the 
form of a fuzzy set such that 

If   A1  and  A2  and..... and  AK  then  B 
A detailed technical discussion of FRBM can be found in 

Bárdossy and Duckstein (1995). In this study, each fuzzy 
rule was derived by the means of MOFR (discussed later) to 
describe the relationship between soil loss and the EI factor 
within a certain range of other of RUSLE factors. There are 
different methods for combining fuzzy rule consequences. 
The method of additive combination of fuzzy rule responses 
was used in this study (Bárdossy and Duckstein, 1995). 
Often a consequence from applying a fuzzy rule system is a 
fuzzy set. The task of transforming a fuzzy consequence into 
a crisp number is called defuzzification. For this study, the 
maximum-weighted sum defuzzification method developed 
by Tran (1999) was utilized. 

MOFR is a fuzzy regression model developed by Tran 
(1999) and Tran and Duckstein (accepted), which is capable 
of combining central tendency and possibilistic properties of 
statistical and fuzzy regression, respectively. MOFR 
overcomes several shortcomings of fuzzy and statistical 
regression approaches (e.g., sensitivity to data outliers of 
fuzzy regression, difficulties of verifying distribution 
assumptions, insufficient and/or inaccurate input and/or 
output data, vagueness of the relationship between input and 
output variables in statistical regression). Furthermore, 
MOFR is robust with respect to y-direction outlier (often 
referred to simply as outlier, as distinct from the x-direction 
outlier often referred to as the leverage point). Hence, the 
model can be used when only few data are available, while 
this is not the case for least-squares regression. This feature 
is essential for MOFR to be applied to a small subset of 

RUSLE data. A technical description of this MOFR can be 
found in Tran (1999), and Tran and Duckstein (accepted). 

In fact the FLBM approach used in this study can be 
viewed as a fuzzy piecewise linear regression model 
(FPLRM), in which MOFR was applied to derive the linear 
equation for each segment of data and FRBM was used to 
link those segments together. However, in contrast with 
conventional piecewise regression models, FPLRM does not 
have a single joint point but a nonlinear curve in the 
transition zone between two consecutive segments (Figure 
1).  

To apply the fuzzy rule-based modeling approach to 
RUSLE, the following steps were carried out: 
1. Divide the data set into several subsets of certain RUSLE 

parameter ranges; 
2. Apply MOFR to derive the relationship between soil loss 

and EI for each certain range of other RUSLE factors; 
and 

3. Use FRBM to link these MOFR models and apply the 
fuzzy rule set to compute predicted soil loss 
corresponding to a combination of RUSLE factors. 
A detailed description of these steps can be found in 

Tran (1999). Figure 1 illustrates the fuzzy logic-based model 
applied for barley data. 

Predictions from the RUSLE and the fuzzy model were 
compared with measured data in several ways, including r2 
and the model efficiency defined by Nash and Sutcliffe 
(1970), which is calculated as follows: 
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where Qmi and Qci are the measured and computed values, 
respectively, of event i, and −

mQ is the mean of measured 
values. 

RESULTS AND DISCUSSION 
Results showed that the fuzzy model performed better 

than RUSLE. The Nash-Sutcliffe model efficiency of the 
fuzzy model on a yearly basis was 0.70 while RUSLE's was 
0.58 (Table 1). On an average annual basis, the efficiency 
was 0.90 and 0.72 for the fuzzy model and RUSLE, 
respectively, an improvement of >25% with respect to the 
performance of RUSLE. Similar picture can be seen if r2 is 
used to compare the performance of RUSLE and the fuzzy 
model (Table 1). Furthermore, the problem of over 
prediction at low soil loss rates and under prediction at  high 
soil loss rates was reduced with the fuzzy model. Fig. 2 
shows that the over prediction at soil loss rates <10 ton ac-1 
was decreased significantly. On the other hand, the fuzzy 
model lessened considerably the over prediction at soil loss 
rates >20 ton ac-1. It should be mentioned that over 
prediction at low soil loss rates is less critical than under 
prediction at high soil loss rates.  

The FLBM approach applied to RUSLE did not only 
make the structure of the model more flexible and more 
realistic in describing the relationship between soil loss and 
rainstorm parameter, but it also overcame the problems of 
uncertainty in the RUSLE parameters. For instance, due to  



 

Table 1: model on a yearly basis and on an average annual basis. 
Parameter Subset n RUSLE† RUSLE‡ fuzzy model 

    On a yearly basis 
Nash & Sutcliffe Calibration 957 - 0.612 0.666 
model efficiency Validation 745 - 0.576 0.753 

 Whole 1702 0.586 0.599 0.698 
r2 Calibration 957 - 0.617 0.674 
 Validation 745 - 0.576 0.753 
 Whole 1702 0.604 0.603 0.704 

   On an average annual basis 
Nash & Sutcliffe 
model efficiency 

203 0.719 0.721 0.896 

r2  203 0.736 0.740 0.905 

† No recalibration was made for the RUSLE. 
‡ Recalibration was made for the RUSLE using the calibration subset (957 data points). 
 
 

interdependency between variables, values of a particular 
RUSLE parameter used in combination with other 
parameters within certain ranges might be incorrect. 
Through multiplication of all factors and nothing else to 
compute soil loss, this kind of error directly affects the result 
of the RUSLE. In contrast, the fuzzy model took into 
account the issue of interdependency and provided the best 
fit between soil loss and rainstorm energy.  
In addition to central values, the fuzzy model provided lower 
and upper bounds on the predicted range of soil loss (Fig. 1). 
These bounds are valuable information for both scientific 
understanding and for management decisions. For instance, 
the level of uncertainty associated with a given range of 
RUSLE factors can be evaluated from these predicted ranges 
of soil loss.  

In terms of modeling, FRBM makes the tasks of model 
development and updating quite easy. It is because each 
fuzzy rule can be developed or updated independently. This 
feature is not available in conventional modeling techniques, 
as the work must be done over for the entire model. 

CONCLUSION 
This analysis showed that the FLBM approach has 

several good features. For instance, the approach is quite 
simple, no other data outside RUSLE are needed, and the 
main structure of RUSLE is maintained. Moreover, the 
performance of RUSLE was improved significantly with the 
use of this approach. Hence it would be worth a try to 
employ the whole data set used in RUSLE to develop the 
fuzzy RUSLE model. 
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