Estimating WEPP Cropland Erodibility Values from Soil Properties

Bill Elliot and Dennis Flanagan Retired USDA Forest Service & Res. Ag Engr. USDA ARS

What's in this Presentation?

- History of the Water Erosion Prediction Project (WEPP)
- OWEPP Cropland Field Studies
- Correlations between Soil Erodibility and Soil Properties
- Regressions to Estimate Erodibility from Soil and Site Properties
- Potential for Further Studies

Some WEPP History and Features...

In the 1980s the USDA ARS and other agencies and universities developed a physically based soil erosion model

OModel included

- Daily weather, hydrology & plant growth
- Rill and Interrill erosion processes
- Single storm and long-term average annual runoff and erosion estimates

One of the WEPP requirements was a nonexistent database of rill and interrill soil erodibility values

Erodibility Equations in WEPP

- OInterrill Erodibility:
 - \circ Pre 1989
 - $D_i = V S_f K_{i1} i^2$ • Post 1990

•
$$D_i = V S_f \mathbf{K_{i2}} i q$$

ORill Erodibility

$$\circ D_r = D_c \left(1 - \frac{G}{T_c} \right) = K_r \left(\tau - \tau_c \right) \left(1 - \frac{G}{T_c} \right)$$

Obut the erodibility properties, K_i , K_r and τ_c were not known for any soil.

The **Big** Research Question:

How can we estimate K_i , K_r and τ_c from other measurable soil properties for many of the 20,000 soils in the U.S.A.?

What Soils were Studied?

• To build a soil erodibility database for WEPP, a field study was planned

- \odot 36 sites covering the USA
- \circ 6 Soil orders

\odot Wet and Dry, and Warm and Cool climates

 Glacial, Aeolian, Alluvial, young and weathered soils

How did we Measure Interrill Erodibility?

- Tilled ridged plots on fallow ground and formed plots
- OSimulated Rainfall (~60 mm/h)
- Collected timed runoff with sediment in bottles
- ○Weighed → Dried → Weighed sample book
- Solved the Interrill Erodibility for K_i

Bill collecting interrill samples

 $\circ K_i = \frac{D_i}{S_f \, i \, q}$

How was rill erodibility measured?

OSix rills 9-m long were formed with a ridging tool and borders installed

- During simulated rainfall, additional flows of ~0, 7, 14, 21, 28 & 35 l/min were added
 - Two timed runoff samples were collected from each flow rate
 - Samples bottles were weighed, dried and reweighed to calculate runoff and sediment flux
 - Hydraulic shear was calculated for each runoff rate from rill flow velocities and rill cross sectional shapes

 $\circ K_r$ and τ_c were calculated from D_c vs shear regressions, considering sediment in transport

Bird's Eye View of a Study Site

Collecting Rill Erosion Data

Measuring Rill Velocity with stopwatch and fluorescent dye

Sample bottles to measure sediment concentration and Timed bucket masses to measure runoff rates

How were Soil Properties Measured?

- On each site, local SCS soil survey specialists dug one 2-m deep pit in the center of the site, and 4 1m pits nearer the perimeter
 - Soils were analyzed at the SCS soil survey laboratory in Lincoln, NB
- Ouring the erosion experiment, soil strength measurements were made on rill sides and bottoms, and on an external plot
 - Pocket penetrometer with big head
 - \odot Handheld torvane shear device with big vane
 - Fall cone penetrometer

Findings Presented as Proceedings

Correlation and regression relationships were derived relating soil erodibility to soil properties

'90b focus on mineralogy & geomorphology

aper No. 902557

Best Correlation Coefficients

T

κ _i					
Property	r	K _r			
Soil Order	0.52	Property	r	$ au_c$	
WD Clay/Clay	-0.42	Mineralogy/Clay	0.49	Property	r
K-Factor	0.36	Clay Content	-0.42	Site Slope	0.60
Very Fine Sand	0.37	Organic Carbon	-0.41	WD Clay/Clay	0.45
		Very Fine Sand	0.25	CEC/Clay	-0.36
	Very Fine Sand	-0.56			

Very Fine Sand was the only property that correlated with all three erodibility parameters

Regression Equation Conundrum

Should we seek erodibility predictive equations with A) the best regression coefficients (r^2) with less common soil properties or

B) fewer, more common soil properties with lower r² values?

A couple of Equations for Estimating K_i

• A) Elliot et al. '90b, considering mineralogy & geomorphology

For soils with smectitic clays (swelling): $K_i = 0.44 + 1.728 \ Cond + 2.79 \times 10^{-3} \left(\frac{WDSilt^3}{FSi^2} \right)$

For soils with kaolinitic clays (non swelling):

$$K_{i} = -1.2 + 0.71 \log_{e} \left[\frac{(Ca + Mg + Na)^{2}}{Mg} \right] + 1.1 \log_{e} \left[\frac{Clay^{2}}{SpSf \times WDClay} \right] r^{2} = 0.79$$

Or

OB) '95 WEPP User Summary

For soils with *Sand* > 30%: *K*_i = 2.728 + 0.1921 *VfSa*

For soils with Sand \leq 30%: $K_i = 6.054 - 0.05513$ Clay $r^2 = 0.24$

A couple of Equations for Estimating K_r

• A) Elliot et al. '90a, focus on soil properties

$$K_r = 8.661 + 0.00212 M + 1.36 \frac{Sand}{100 - Sand} - 0.302 LL + 1.47 \times 10^{-12} Al^{-8} Mg^{-4}$$
$$r^2 = 0.76$$
Or

```
• B) '95 WEPP User Summary
```

For soils with Sand > 30%: $K_r = 1.97 + 0.3 V f Sa + 38.63 e^{(-1.84 OM)}$

For soils with Sand \leq 30%: $K_r = 6.9 + 134 e^{(-0.2 Clay)}$ $r^2=0.55$

Seven sets of equations are in the paper.

Some Interesting Findings

 Degree of soil weathering is important for estimating K_i

- \bigcirc Texture is important for estimating K_r
- \bigcirc Plot steepness is useful for estimating au_c
- OUSLE *K-factor* was a poor predictor of WEPP soil erodibility
 - It is more highly correlated with hydraulic conductivity than WEPP erodibility variables

Points to Ponder

- Should simple or complex equations be used, knowing the coefficient of variation for erodibility (standard deviation ÷ mean) is 30%?
- Should we consider variability of soil properties in the analysis?
 - For each site, There were 5 SCS pits, 6 rill plots and 6 interrill plots.
- Weathering is important for interrill erosion
 What is the best way to quantify weathering?
 Should more soils be added to the database?

Research Opportunities

OThere is an opportunity to expand the soil database

- More soils with calcium carbonate
- More aridisols (1 in study), andisols and oxisols (none in database)
- \odot May result in more complicated regression equations

 There is an opportunity to evaluate variability in the erodibility data set and the SCS data set

 What is the effect of that variability on WEPP's performance?

Some Acknowledgements

- OStudy was funded by the USDA-ARS
- Or. Kris Kohl and many other students assisted in data collection and analysis
- OThe NRCS still maintains the soil properties database accessible on their web site
- John Laflen was the PI on the study, and the major professor of both

authors

John briefing field crew at the start of the study

Questions or Comments

• Full paper to be published with symposium collection

Understad Annie Benow worked at even site Lab truck had bench for weighing bottles and two drying ovens

and convied the compendium

The End

Calculating K_r and τ_c

RILL DATA ANALYSIS

SOIL: BARNES - MN

DATE: AUGUST 9, 1987

Specific Weight = 9786.3 N/m3 Transport Coefficient = 96.20 Kinematic Viscosity = 0.908 x 10-6 m2/s Velocity Factor = 0.687

Di = 38.02 g/mn/m2

Source	Flow	Conc.	M Vel.	A Vel.	. Area	Hrad	Width	Qs	t	TC	E	Dr	DC	F	Re
	l/mn	g/l	m/s	m/s	cm2	cm	cm	g/s	<mark>N/m</mark> 2	g/s	<	- <mark>g/s/m2</mark>	>		
Rill 1	slope =	= 8.3 %													
R+0	3.4	61.4	0.27	0.19	3.05	0.45	6.4	3.5	<mark>3.66</mark>	43	3.91	2.10	0.00	0.85	919
R+2	9.9	57.3	0.46	0.32	5.24	0.57	7.7	9.5	<mark>4.63</mark>	74	3.16	10.55	10.08	0.37	1984
R+2	9.6	60.5	0.46	0.32	5.07	0.56	7.7	9.7	<mark>4.55</mark>	72	3.16	10.86	10.01	0.37	1949
R+4	16.9	72.5	0.51	0.35	8.05	0.78	9.0	20.4	<mark>6.34</mark>	138	2.62	22.70	<mark>24.31</mark>	0.41	3010
R+4	17.7	65.3	0.51	0.35	8.41	0.80	9.0	19.2	<mark>6.50</mark>	143	2.62	21.20	<mark>22.86</mark>	0.42	3087
R+6	22.1	62.1	0.52	0.36	10.30	0.91	10.3	22.8	<mark>7.39</mark>	198	2.21	22.53	<mark>24.46</mark>	0.46	3580
R+6	22.9	52.6	0.52	0.36	10.70	0.94	10.3	20.1	<mark>7.64</mark>	208	2.21	19.56	<mark>21.41</mark>	0.48	3698
R+8	27.3	97.9	0.50	0.34	13.26	1.02	11.5	44.6	<mark>8.29</mark>	265	1.89	41.02	<mark>44.62</mark>	0.56	3859
R+8	29.1	77.5	0.50	0.34	14.12	1.07	11.5	37.6	<mark>8.69</mark>	284	1.89	34.31	37.07	0.59	4048
R+10	37.2	110.9	0.54	0.37	16.73	1.21	12.8	68.8	<mark>9.83</mark>	380	1.64	58.02	<mark>63.63</mark>	0.57	4944
								2	9.83	380	1.64	48.84	53.00	0.57	4944

Dc vs Shear