

A Decreasing Trend of Water Erosion in Wheat-based Croplands of Eastern Washington: WEPP Simulation

M. Samrat Dahal1 Joan Q. Wu1 Mariana Dobre2

1Department of Biological Systems Engineering 1Washington State University

2Department of Soil and Water Systems 2University of Idaho

January 9, 2023

Background

- Water erosion a continuous agricultural and environmental problem in the inland Pacific Northwest
- In the inland PNW high erosion rates result from
	- Highly erodible silt loam soil
	- Hilly terrain
	- Rainy winters with frequent freezethaw cycles weakening soil
	- Tillage practices leaving soil pulverized and unprotected

Background

Studies for this region show

- 10–13 t ha−¹ for 2000s from RUSLE (Kok et al., 2009)
- 27–45 t ha−¹ from the USLE model (USDA, 1978)
- 53.8 t ha−1 for 1940–1982 from field investigation (McCool and Roe, 2005)

WASHINGTON STATE

Questions?

- \triangleright Has the climate changed? If so, how impactful was the change?
- Conservation practices (reduced tillage, crop rotation) have been adopted since 1980s. How impactful are these changes?
- What is the long-term trend of erosion in the inland PNW?

WASHINGTON STATE
UNIVERSITY

1. Evaluate the long-term (1940–2020) changes in climate (precipitation, temperature, numbers of extreme events and

- freeze-thaw cycles)
- WEPP simulation

2. Assess temporal trend in soil erosion as impacted by climatic conditions and management practices based on

Objectives

Study Area

- Whitman County: largest cerealgrain production area in eastern WA (3.0×105 ha)
- Mediterranean climate with dry summers and wet winters
- Three distinct precipitation zones
	- \triangleright Low (<380 mm) (Wheat-Fallow = WF)
	- \triangleright Intermediate (380-460 mm) (Wheat-Barley-Fallow = WBF)
	- High (>460 mm) (Wheat-Barley-Pea = WBP)
- Conservation tillage practices have increased since 1980s

WASHINGTON STATE

Climate Analysis

• Climate data divided into two periods Past: 1940–1982 Present: 1983–2020 • Numbers of extreme precipitation events freeze-thaw cycles • Statistical analysis i. normality (Shapiro-Wilk test) ii. means (ann. avg. precipitation, avg. daily T_{max} and T_{min} with <u>t-test</u> or <u>Wilcoxon rank-sum test</u>) iii. linear trends (pooled climate data with Mann Kendall test)

WASHINGTON STATE
UNIVERSITY

The WEPP Model

- USDA ARS Water Erosion Prediction Project
- Simulates daily water balance and erosion
- WEPPcloud discretizes watershed into hillslopes and channel segments
- Major inputs: climate, topography, soil, management

WEPP Interface

WEPPcloud

Watersheds Delineation

High: Spring Flat Creek Watershed (SFCW-high)

Intermediate: Upper Imbler Creek Watershed (UICWintermediate)

 Low: Winn Lake Canyon Watershed (WLCW-low)

WASHINGTON STATE
UNIVERSITY

WEPP Parameterization

1) Climate

• Temperature and precipitation from nearby stations

• rolling hills predominant in high- and intermediate-

2) Topography

- precipitation zones
- flat areas more in low-precipitation zone
- 3) Soil
	- silt loam
- 4) Management
	- a) Tillage: Intense, Reduced, No-till

b) Rotation: Past (WF); Present (WF, Low-P; WBF,

WASHINGTON STATE

Intermediate-P; WBP, High-P)

Precipitation

- Average Annual precipitation
	- > High-P: 39 mm
	- Intermediate-P: 3 mm

> Low-P: 24 mm

- High-P: monthly P decreased in winter but increased in spring
- Intermediate-P: similar to high-P
- Low-P: monthly P increased in all but summer season

Average monthly precipitation

Temperature

max

- High-P: 0.6 °C
- Intermediate-P: 0.5 °C
- > Low-P: 0.2 °C 1

min

- > High-P: 0.3 °C
- > Intermediate-P: 0.2 °C

> Low-P: 0.2 °C

• General increase in monthly average T_{max} and T_{min} in all three zones

Monthly average temperature

Statistical Analyses $(\alpha = 0.05)$

- Changes in precipitation not statistically significant
- T_{max} and T_{min} in the high-precipitation zone significantly increased
- \bullet T_{max} in intermediate- and low-precipitation zones significantly increased
- The number of freeze-thaw cycle in the lowprecipitation zone significantly decreased, and is not changed for the other two zones

Erosion

• Erosion decreased remarkedly 32%, 57%, and 70% in low-, intermediate-, and high-precipitation zones of Whitman County

• Lower tillage intensity leads to lower erosion

• Erosion primarily occurs in winter **Average monthly erosion**

Climate Effects

- Crop rotation and tillage practices being the same, erosion has
	- decreased for high- and intermediate-P zones
	- increased for the low-P zone

Why?

- Annual precipitation and number of highprecipitation events have
	- decreased in high- and intermediate-P zones
	- increased in the low-P zones

 $100 -$

WF, intense tillage

Intermediate

Low

Management Effects

• Climate (present) and tillage (intense) being the same

 \triangleright erosion rate lower in three-year rotations

Why?

Soil surface bare in early winter as crop is not fully grown

• Wheat and fallow years produce higher erosion

Wheat years

 $10¹$

 $5¹$

 \overline{a}^{-1}

 $\begin{array}{c}\n\text{Eroslon 1} \\
\text{Slos 20} \\
\text{A} \\
\text{A} \\
\text{B} \\
\text{B} \\
\text{C} \\
\text{D} \\
\text{D} \\
\text{E} \\
\text{D} \\
\text{A} \\
\text{B} \\
\text{C} \\
\text{D} \\
\text{D} \\
\text{E} \\
\text{F} \\
\text{F}$

 $10 -$

 $5¹$

Fallow years

- o bare soil provides little resistance to erosion
- o more prone to runoff due to higher soil water saturation without crop consumptive use

CONCLUSIONS

Conclusions

• Climate trend (from past to present)

- \triangleright change in annual precipitation **not** significant
- \triangleright T_{max} in all three zones, and T_{min} in high-precipitation zone increased significantly
- \triangleright number of freeze-thaw cycles in low-precipitation zone decreased significantly
- Erosion
	- \triangleright **decreased** from past to present by 32%, 57%, and 70% respectively in low-, intermediate-, and high-precipitation zones of Whitman County
- Decrease in erosion rate was a result of
	- \triangleright decrease in cold-season precipitation (amount and the number of extreme events)
	- \triangleright shift from wheat-fallow to three-year rotations (WBP, WBF)
	- \triangleright adoption of conservation tillage

WASHINGTON STATE

Questions?

WASHINGTON STATE

mugalsamrat.dahal@wsu.edu

References

• McCool, D.K., & Roe., R.D. (2005). Long-term erosion trends on cropland in the Pacific Northwest. *An American Society of Agricultural Engineering section meeting presentation*. Paper PNW05-1002. St Joseph, MI: American Society of Agricultural

• United States Department of Agriculture (USDA). 1978. Palouse Cooperative River Basin Study. USDA Soil Conservation Service, Forest Service, and Economics, Statistics, and Cooperative

- Engineers.<https://doi.org/10.13031/2013.20047>
- Service.
- 64:253–264.

• Kok, H., R.I. Papendick, and K.E. Saxton. 2009. STEEP: Impact of long-term conservation farming research and education in Pacific Northwest Wheatlands. Journal of Soil and Water Conservation

Yearly Variation

- The magnitude of erosion clearly lower in the present
- Large winter precipitation, more extreme events and freeze -thaw cycles produced more erosion and vise versa
	- High erosion years; 1959, 1961, 1978, 1995
	- Low erosion years; 1949, 1979, 1993, 2001

Topography

• Slope steepness

rolling hills

predominating in high and intermediate zones

- 100-200 m slope length dominant
- Soil depth primarily deep (>1200 mm)

 (a)

 (d)

flat areas

predominating in low zone

WEPP Scenarios

- Three watersheds
- Two time periods
- Three rotations and tillage practices
- Considering different start phase of rotation, e.g. wheat-fallow and fallow-wheat

Management

Tillage 1. Intense 2. Reduced 3. No till

Rotation

Past

1. Wheat-fallow

Present

- 1. Wheat-barley-pea
- 2. Wheat-barleyfallow
- 3. Wheat-fallow

Conservation tillage have continuously increased in the study area

Climate-Management Interaction

\n- Effect of climate
$$
\triangleright
$$
 Erosion lower in the present though with same rotation as in the past
\n- Effect of crop rotation $\frac{1}{2}$ $\frac{1}{2}$
\n- Effect of crop rotation $\frac{1}{2}$ $\frac{1}{2$

Mean Comparisons

• The number of freeze-thaw cycle in low-precipitation zone significantly **decreased**, and is not changed for the other two

x rank sum

- Change in precipitation not statistically significant
-
- increased
- zones

• T_{max} and T_{min} in high-precipitation zone significantly *increased* \cdot T_{max} in intermediate- and low-precipitation zones significantly

Trend Analysis

• T_{min} and T_{max} increased significantly in high-precipitation zone

• T_{max} in intermediate-precipitation zone increased significantly

Precipitation Events

in general and High precipitation events

• Average number of precipitation events greater than 15 mm decreased

