

A Decreasing Trend of Water Erosion in Wheat-based **Croplands of Eastern Washington: WEPP Simulation**

¹Department of Biological Systems Engineering ¹Washington State University

²Department of Soil and Water Systems ²University of Idaho

M. Samrat Dahal¹ Joan Q. Wu¹ Mariana Dobre²

January 9, 2023

Background

- Water erosion a continuous agricultural and environmental problem in the inland Pacific Northwest
- In the inland PNW high erosion rates result from
 - > Highly erodible silt loam soil
 - > Hilly terrain
 - Rainy winters with frequent freezethaw cycles weakening soil
 - > Tillage practices leaving soil pulverized and unprotected

Background

Studies for this region show

- > 10–13 t ha⁻¹ for 2000s from RUSLE (Kok et al., 2009)
- > 27-45 t ha⁻¹ from the USLE model (USDA, 1978)
- > 53.8 t ha⁻¹ for 1940–1982 from field investigation (McCool and Roe, 2005)

Questions?

- Has the climate changed? If so, how impactful was the change?
- Conservation practices (reduced tillage, crop rotation) have been adopted since 1980s. How impactful are these changes?
- What is the long-term trend of erosion in the inland PNW?

? If so, hange? educed ye been w ges? nd of

Objectives

- freeze-thaw cycles)
- WEPP simulation

1. Evaluate the long-term (1940-2020) changes in climate (precipitation, temperature, numbers of extreme events and

2. Assess temporal trend in soil erosion as impacted by climatic conditions and management practices based on

Study Area

- Whitman County: largest cerealgrain production area in eastern WA (3.0×10⁵ ha)
- Mediterranean climate with dry summers and wet winters
- Three distinct precipitation zones
 - \succ Low (<380 mm) (Wheat-Fallow = WF)

 - High (>460 mm) (Wheat-Barley-Pea = WBP)
- Conservation tillage practices have increased since 1980s

 \blacktriangleright Intermediate (380–460 mm) (Wheat-Barley-Fallow = WBF)

Climate Analysis

 Climate data divided into two periods **Past: 1940–1982** Present: 1983–2020 Numbers of > extreme precipitation events Freeze-thaw cycles Statistical analysis normality (<u>Shapiro-Wilk test</u>) i. ii. means (ann. avg. precipitation, avg. daily T_{max} and T_{min} with <u>t-test</u> or <u>Wilcoxon rank-sum test</u>) iii. linear trends (pooled climate data with Mann Kendall test)

The WEPP Model

- USDA ARS Water Erosion **Prediction Project**
- Simulates daily water balance and erosion
- WEPPcloud discretizes watershed into hillslopes and channel segments
- Major inputs: climate, topography, soil, management

WEPP Interface

Map

WEPPcloud

Lon, Lat, [Zoom]

Watersheds Delineation

High: Spring Flat Creek Watershed (SFCW-high)

Intermediate: Upper Imbler Creek Watershed (UICWintermediate)

Low: Winn Lake Canyon Watershed (WLCW-low)

Watershed	Area (ha)	Hillslopes	Channel Segments
SFCW	5261	1163	507
UICW	3602	801	341
WLCW	8094	1632	721

WEPP Parameterization

1) Climate

2) Topography

- precipitation zones
- flat areas more in low-precipitation zone
- - silt loam
- 4) Management
 - a) Tillage: Intense, Reduced, No-till

Intermediate-P; WBP, High-P)

Temperature and precipitation from nearby stations

rolling hills predominant in high- and intermediate-

b) Rotation: Past (WF); Present (WF, Low-P; WBF,

Precipitation

- Average Annual precipitation
 - High-P: 39 mm
 - Intermediate-P: 3 mm

> Low-P: 24 mm

- High-P: monthly P decreased in winter but increased in spring
- Intermediate-P: similar to high-P
- Low-P: monthly P increased in all but summer season

High 80 -60 -40 -20 -Intermediate 80 -- 09 - 09 Б 20-Low 80 -60 -40 -20 -

Feb

Jan

Mar

Apr

May

Sep

Oct

Aug

Jul

Jun

Month

Average monthly precipitation

Temperature

max

- High-P: 0.6 °C
 Intermediate-P: 0.5 °C
- ► Low-P: 0.2 °C

min

- ➢ High-P: 0.3 °C
- Intermediate-P: 0.2 °C

Low-P: 0.2 °C

 General increase in monthly average T_{max} and T_{min} in all three zones

Monthly average temperature

Statistical Analyses ($\alpha = 0.05$)

- Changes in precipitation <u>not</u> statistically significant
- T_{max} and T_{min} in the high-precipitation zone significantly increased
- T_{max} in intermediate- and low-precipitation zones significantly increased
- The number of freeze-thaw cycle in the lowprecipitation zone significantly <u>decreased</u>, and is <u>not</u> changed for the other two zones

Erosion

Erosion decreased remarkedly \geq 32%, 57%, and 70% in low-, intermediate-, and high-precipitation zones of Whitman County

Lower tillage intensity leads to lower erosion

• Erosion primarily occurs in winter

Average monthly erosion

Climate Effects

- Crop rotation and tillage practices being the same, erosion has
 - decreased for high- and
 - intermediate-P zones increased for the low-P
 - zone

Why?

- Annual precipitation and number of highprecipitation events have
 - decreased in high- and intermediate-P zones
 - increased in the low-P zones

100-

WF, intense tillage

High Intermediate

Low

Management Effects

• Climate (present) and tillage (intense) being the same

erosion rate lower in three-year rotations

Why?

 Wheat and fallow years produce higher erosion

> Wheat years

0	Larger number of	20-
	tillage passes	15-

10

5

ha⁻¹

Erosion t 15

10

5

Soil surface bare in early winter as crop is not fully grown

> Fallow years

- bare soil provides 0 little resistance to erosion
- more prone to Ο runoff due to higher soil water saturation without crop consumptive use

CONCLUSIONS

Conclusions

<u>Climate trend (from past to present)</u>

- Change in annual precipitation <u>not</u> significant
- \succ T_{max} in all three zones, and T_{min} in high-precipitation zone **increased** significantly
- In number of freeze-thaw cycles in low-precipitation zone **<u>decreased</u>** significantly
- Erosion
 - decreased from past to present by 32%, 57%, and 70% respectively in low-, intermediate-, and high-precipitation zones of Whitman County
- Decrease in erosion rate was a result of
 - decrease in cold-season precipitation (amount and the number of extreme events)
 - \succ shift from wheat-fallow to three-year rotations (WBP, WBF)
 - > adoption of conservation tillage

mugalsamrat.dahal@wsu.edu

Questions?

References

- Engineers. https://doi.org/10.13031/2013.20047
- Service.
- 64:253-264.

McCool, D.K., & Roe., R.D. (2005). Long-term erosion trends on cropland in the Pacific Northwest. An American Society of Agricultural Engineering section meeting presentation. Paper PNW05-1002. St Joseph, MI: American Society of Agricultural

United States Department of Agriculture (USDA). 1978. Palouse Cooperative River Basin Study. USDA Soil Conservation Service, Forest Service, and Economics, Statistics, and Cooperative

Kok, H., R.I. Papendick, and K.E. Saxton. 2009. STEEP: Impact of long-term conservation farming research and education in Pacific Northwest Wheatlands. Journal of Soil and Water Conservation

Yearly Variation

- The magnitude of erosion clearly lower in the present
- Large winter precipitation, more extreme events and freeze-thaw cycles produced more erosion and vise versa
 - High erosion years;
 1959, 1961, 1978,
 1995
 - Low erosion years; 1949, 1979, 1993, 2001

Topography

Slope steepness

>rolling hills

predominating in high and intermediate zones

> flat areas

predominating in low zone

- 100-200 m slope length dominant
- Soil depth primarily deep (>1200 mm)

(d)

(a)

WEPP Scenarios

- Three watersheds
- Two time periods
- Three rotations and tillage practices
- Considering different start phase of rotation, e.g. wheat-fallow and fallow-wheat

Spring Flat Creek Watershed (SFCW)			Upper Imbler Creek Watershed (UICW)				Winn Lake Canyon Wate			
<u>Sce.</u>	<u>Period</u>	Rotation*	<u>Tillage</u>	<u>Sce.</u>	Period	Rotation*	<u>Tillage</u>	<u>Sce.</u>	<u>Period</u>	Rotation*
1	Past	WF	Intense	13	Past	WF	Intense	25	Past	WF
3 4 5	Present	WBP	Intense Reduced Notill	15 16 17	Present	WBF	Intense Reduced Notill	27 28 29	Present	WF

es of rotation, e.g.

Management

Tillage 1. Intense 2. Reduced 3. No till

Conservation tillage have continuously increased in the study area

Rotation

Past

1. Wheat-fallow

Present

- 1. Wheat-barley-pea
- 2. Wheat-barleyfallow
- 3. Wheat-fallow

Climate-Management Interaction

• Effect of climate 20 Erosion lower in the present though with same rotation as in the past า ชา 40- Effect of crop rotation rosion t Erosion lower in threeyear rotations in the Ш present • Effect of tillage 40 Erosion lower with lower tillage intensity

Mean Comparisons

- Change in precipitation <u>not</u> statistically significant
- increased
- zones

Precipitation

Precipitation								Wilcox
Zone		Amount		Normality test		Student t-test		test
		Past	Present	W	р	t	р	W
High	Precipitation	552.0	511	0.98	0.11	1.75	0.084	
	T _{max}	14.2	14.8	0.91	< 0.0001			474
	T _{min}	2.6	2.9	0.96	0.02			557
	Freeze-thaw cycles	22	21	0.96	0.02			975
Intermediate	Precipitation	458	455	0.98	0.41	0.11	0.911	
	T _{max}	14.4	14.9	0.91	< 0.0001			498
	T _{min}	2.3	2.5	0.97	0.05			743
	Freeze-thaw cycles	20	21	0.98	0.17	-0.432	0.667	
Low	Precipitation	353	377	0.99	0.59	-1.28	0.205	
	T _{max}	16.9	17.1	0.85	<0.0001			638
	T _{min}	2.9	2.7	0.94	<0.0001			941
	Freeze-thaw cycles	28	26	0.94	<0.0001			0.94

T_{max} and T_{min} in high-precipitation zone significantly <u>increased</u> • T_{max} in intermediate- and low-precipitation zones significantly

 The number of freeze-thaw cycle in low-precipitation zone significantly decreased, and is not changed for the other two

ox rank sum

<0.0001 0.006 0.286

0.001 0.298

0.045 0.454 0.031

Trend Analysis

• T_{min} and T_{max} increased significantly in high-precipitation zone

• T_{max} in intermediate-precipitation zone increased significantly

Precipitation Events

 Average number of precipitati in general

Average number of precipitation events greater than 15 mm decreased

High precipitation events