

Goundwater Seepage Mechanisms of Streambank Erosion and Failure

Taber L. Midgley – M.S. Student Garey A. Fox – Associate Professor Abdulsahib Al-Madhhachi – Ph.D. Student Rachel Carson – M.S. Student Biosystems Engineering | Oklahoma State University

Glenn V. Wilson – Research Hydrologist/Soil Physicist USDA Agricultural Research Service | National Sedimentation Laboratory

Introduction

- Sediment loadings in streams cause
 - Degradation of downstream lakes
 - Phosphorus loadings
 - Destruction of aquatic habitat
 - Impairment of water for domestic use
- Streambank erosion may be significant
 - Geotechnical
 - Fluvial

Erosion Mechanisms

• Fluvial Erosion

- Critical shear stress (t_c) and erodibility coefficient (k_d)

$$\boldsymbol{E}_r = \boldsymbol{k}_d \; (\tau_o - \tau_c)^a$$

- Numerous studies have measured t_c and k_d
- A submerged jet test device (JET – Jet Erosion Test)

JET – Jet Erosion Test

Erosion Mechanisms

- Streambank Erosion by Groundwater Flow
 - Often neglected
 - Can cause erosion in three specific mechanisms
 - Soil Pore-Water pressure
 - Seepage Gradient Forces
 - Seepage Particle Mobilization

 $s = [c' + (\sigma_n - u_w)tan\varphi'] + [(u_a - u_w)tan\varphi^b]$

- Negative pore water pressure (suction) increase the 2nd bracketed term
 - Apparent Cohesion
- Saturation of soil profile results in loss of this apparent cohesion
- Also increases soil weight

Seepage Gradient Forces

• Three factors

- Ratio of seepage forces magnitude to gravitational force magnitude
- Bank angle
- Seepage vector angle
- Soil's internal angle of friction
- Pop-out or Tension Failures
- Chu-Agor et al. (2008)
 - When soil resistive forces cannot withstand the seepage gradient force, a pop-out failure occurs
 - When soil resistive forces can withstand the seepage gradient force, the possibility of concentrated seepage with particle mobilization occurs

 $SF = \rho g \frac{\partial h}{\partial y}$

Seepage Particle Mobilization

Seepage Particle Mobilization

Chu-Agor et al. (2008)

Failure Mechanisms

• Pop-out Failure (1.45 g/cm³, 15 cm head)

• Undercutting (1.7 g/cm³, 15 cm head)

Lab Conclusions

- Experiments continue...
- Critical density distinguishes mechanism of failure
 - Sandy Soil 1.3 g/cm³
 - Loamy Sand 1.5 g/cm³

Chu Agor et al. (2008)

Chu Agor et al. (2008)

- Sandy Loam 1.6 g/cm³
- Pop out below / Particle mobilization above
- More cohesive soils
 - Significantly increased time to failure
 - Decreased failure volume

Dry Creek, Mississippi

- Chickasaw County
- Tributary to Little Topashaw Creek

Site Setup

Seepage Collection

East Seep

Erosion Rate

- Avg: 0.06 g/min
- Max: 0.13 g/min

Flowrate

- Avg: <0.01 L/min
- Max: <0.01 L/min

Middle Seep

Flowrate

- Avg: 0.29 L/min
- Max: 0.43 L/min

Erosion Rate

- Avg: 1.78 g/min
- Max: 7.85 g/min

30 cm depth initially followed by 10 cm over next 8 hours

West Seep One

38 cm in depth over 51 minutes

Self Healing Process

West Seep Two

91 cm in 40 minutes

Field Conclusions

- Seepage rapidly mobilized particles from the sand layer
- Undercutting resulted in unstable upper cohesive banks which b/c of increased soil weight and lack of support
- As this material failed, it would have to be mobilized to clear the way for further particle mobilization
- This soil was resistant to mobilization, so it would further block mobilization **Self Healing Process**

Field Conclusions

- If linked with fluvial erosion, seepage erosion can be a dominate factor in streambank erosion
- Future work is need studying the effects of seepage combined with fluvial processes...

JET Device

- First developed by Hanson in 1990 to measure $t_c \& k_d$
- A laboratory version of the submerged jet (Hanson and Hunt, 2007)
- A new miniature version of the device ("Mini" JET) (2009)

Experimental Setup

Vertical (Streambed) & Horizontal (Streambank)

Experimental Procedure

- Soil samples prepared in the same manner at same time...
 - Sample tested without seepage (seepage head = 0 cm)
 - Other tested with a constant, imposed seepage head (up to 100 cm head on the 12-cm soil mold)
- Equivalent head for JET used in all experiments (61 cm)
- Depth gauge acquired readings of scour over time
- Experimental data analyzed using Blaisdell method

Results

Sandy Clay Loam - Bulk Density = 1.7 g/cm^3

Results

Clay Loam Soil – Vertical

Clay Loam Soil – Horizontal

Conclusions

- Erodibility of cohesive soils exponentially increased with higher seepage forces, especially for lower bulk density soils
- Higher erodibility observed with horizontal setup
- Influence of seepage on erodibility soil specific
 - Mechanistic equations are being derived to estimate erosion under the influence of seepage

Acknowledgments

- Support staff of the USDA National Sedimentation Lab and the USDA Hydraulics Lab for assistance with instrumentation and data collection
- Funded by a National Science Foundation Grant (No. 0943491)

