ISELE 2011, September 2011

Natural Runoff Plot Study to determine effectiveness of organic amendments on Runoff and Erosion

Dr. Mark Risse, Dr. Xianben Zhu, James Eason and Tyler Leonard

The University of Georgia, Department of Biological and Agricultural Engineering

Literature Review

- Surface applied organic mulches and manure can significantly reduce both runoff and soil erosion (Adams, 1966; Meyer et al., 1972; Laflen et al., 1978; Vleeschauwer et al., 1978; Foster et al., 1985; Agassi et al., 1998; Muhktar, 2009).
- Dissipate raindrop impact, reduce crusting, increase roughness, lower shear forces, add organic matter, increase biological activity

Past Work at UGA

- Phase 1: Simulator Pan Study looking at erodibility
- Phase 2: Pot study looking at grass growth
- Phase 3: Treatments with most potential field tested with natural rainfall and using berms.
- Concentrated Flow
- Numerous Demonstrations

Phase 1: Treatments (Risse et al. 2004)

Name	Description/Primary Feedstocks	Reps
PLC1	Poultry Gold Compost/PL	2
PLC2	Sargents Nutrients/PL	2
PLC3	Gro-mor Organics/PL, Vegetable culls, yard waste	1
PL	Aged Poultry Litter/ Layer manure	2
MSC	Cobb Co. Compost/ MSW Compost, biosolids	2
BSC	Erthfood compost/Biosolids, peanuts hulls	3
FWC	Creative Earth/Food residuals, wood waste	2
YWC	UGACompost/Yard & wood waste, some manure	3
WMf	Woodtech Superfine Mulch/Fine wood mulch	2
WMm	Woodtech Medium hardwood mulch	3
<i>WM2</i>	Rockdale Co. Mulch/Course ground waste wood	2
Soil	Bare Soil Control/ screened	3

Treatment selection based on availability in Georgia.

Experimental Setup

- Approx. 1m² pan
- 6 in deep, 2 in soil, 2 in of treatment
- plywood w/ holes, cheesecloth, soil, treatment
- Surface smoothed and leveled
- soil pre-wet before run

Methods

- Norton Rainfall Simulator
- Approx. 16 cm/hr
 (Over 6 in/hr)
- Measure RO, SL, nutrients
- Sampling strategy

Results: Comparative

Conclusions

All compost and mulch treatments tended to reduce solids loss indicating that they were effective as blankets. Composting was important as indicated by differences in poultry litter.

- Mulches and soil lost less nutrients than composts but further studies need to look at longer term and vegetation impacts.
- Treatments with lower respiration rates and nitrate-nitrogen concentrations tended to have less erosion and transport of solids.

Phase 2: Pot study

- 9 treatments from previous study
- 5 gal pots over Cecil Soil
- Ryegrass planted in surface
- No irrigation after 2 weeks

Figure 3. Dry biomass after three and six months.

Phase 3: Field Study (Faucette et al, 2007a and b)

- Conducted on 3' X 15' plots
- 10% slope
- Treatments applied followed by 1 hour of 4" rain
- Follow-up sampling at 3 months and 1 year.

Treatments in field study

- BS: Bare soil
- HS: Hydroseed w/ silt fence
- HM: Hydroseed w/ mulch berm
- BC: Biosolids w/ biosolids berm
- MS: MSW compost & mulch w/ berm
- PL: Poultry litter compost & mulch w/ berm
- YW: UGA yard waste compost w/ berm

Site

Runoff from Hydroseeded plot

Day 1 3 months 12 months

Erosion Data

Concentrated Flow Studies (Zhu et al., 2011)

- Compost does not respond like soil
- Shear stress not dominating factor

OBJECTIVES

- to quantify the runoff and erosion benefits of organic matter additions under long term conditions and natural rainfall
 - Simulated rainfall is "worst case"
 - How much post construction stormwater management is provided?
 - How long does carbon stay in the soil system under these conditions?

Plots at Hort Farm

- 5x15 ft plots
- 10% uniform slope
- Degraded Pacelot soil

Hort Farm Plot Treatments

- Controls: Bare Soil, Grass
- Surface Mulch
- Surface Compost
- Incorporated Compost
- Incorporated Char

• 3 reps of each

- Total Volume of Runoff
- Subsampled for Total Solids Concentration
- Soil sampled annually for carbon by layer

- Analysis for period of June 1, 2010 to May 1, 2010.
- 38 rain events (0.6 to 11.3 cm, 85% of rain)

Conclusions

- Natural runoff plots established
- Initial results indicate that all treatments produced less runoff than bare soil. Surface Compost
 Mulch<Grass<Inc. Compost<Inc. Char
- Similar results for Solids loss although more variability (esp. with smaller storms) Mulch<Grass<Surface Compost<Inc. Char<Inc. Compost
- Higher biomass initially on control grass.
- Looking forward to additional long term analysis and collection of soil carbon data.

Questions??

AWI. RI