

Wind Erosion from Soils Burned by Wildfire

Natalie Wagenbrenner^{1,3}

Matthew Germino², Brian Lamb³, Peter Robichaud¹, Randy Foltz¹

¹Rocky Mountain Research Station, ²USGS, ³Washington State University

Laboratory for Atmospheric Research Washington State University

International Symposium on Erosion and Landscape Evolution

Anchorage, Alaska 19-21 September 2011

United States Department of Agriculture

National Institute of Food and Agriculture

Motivation

Wind erosion understudied compared to fluvial processes in the post-fire environment

Is likely an important process in many burned landscapes

Field et al., 2009

Wind Erosion after Wildfire

- 2000 Cerro Grande Fire, New Mexico
 - Continued emissions 3 years post-fire due to drought (Whicker et al., 2006)
- 2007 Milford Flat Fire, Utah
 - Air quality issues in populated regions downwind
 - Visibility issues caused closures of major transportation corridor
 - Seeding mitigation efforts ineffective
 - Continued wind erosion 3 years after fire (Miller et al., 2010)
- Sankey et al., 2009

Fire Increases Wind Erodibility

- Loss of ground cover
- Fire-induced soil water repellency (*Ravi et al., 2006*)
- Destruction of naturally occurring soil crusts (Ford and Johnson, 2006)
- Aggregate break-up (Varela et al., 2010)
 - Pressure differences from heat of fire
 - More erodible particles after fire
- Wildfire ash (Woods and Balfour, 2010)
 - Suspected to be highly erodible
 - Super-dessicated, non-cohesive, low packing density

Jefferson Fire, July 2010

Burned area: 44,000 ha Semi-arid, high-desert Precipitation: 350 mm/yr Fuels: grasses and shrubs Soils: loamy sands

Post-fire Field Study

Jefferson Fire Field Site

Jefferson Fire Field Site

Jefferson Fire Field Site

Field Measurements

- Passive sediment traps (BSNEs)
 - 5, 10, 20, 55, and 100 cm
 above soil surface
- Real-time PM₁₀ concentrations
 - E-Sampler (MetOne)
 - 2 and 5 m
- 3-D sonic anemometer
- RH, soil moisture, precipitation, solar radiation

Field Measurements

Results: Fall 2010

4-5 September: Sediment Flux

- Strongest wind event after fire
- 13 mm of rain prior to event
- Lower sediment traps completely filled

4-5 September: PM₁₀ Emissions

Time

4-5 September

- After 13 mm precipitation
- **Elevated** emissions • through night

6 m/s

24.56 inHa

4-5 September: Dust plume extended at least 100 km downwind

3-4 October: Sediment Flux

Horizontal sediment flux: 26 kg/m

More frequent precipitation after this event

3-4 October: PM₁₀ Emissions

Horizontal Sediment Flux

Event	Interval (days)	Flux (Kg m⁻¹)	Depth (m)
Netherlands Riksen and Goosens, 2005	7	2000	1
Kansas Fryrear, 1995	1	1236	2
Loess Plateau, China Dong et al., 2010	30	800	150
4-5 Sep	11	570*	1
Texas Van Pelt et al., 2004	1	626	1
Australia Leys and McTainsh, 1996	7	213	2.3
3-4 Oct	14	26	1
Columbia Plateau Sharratt et al., 2007	3	22	1.5
Mojave Desert van Donk et al., 2003	30	77	2

* Conservative estimate, sediment traps overfilled

PM₁₀ Concentration and Vertical Flux

Dust Event	Event Duration (hrs)	Max Concentration (µg m³)	Max Vertical Flux (μg m ² s ⁻¹)
4-5 Sep	28.5	690,000	-
3 Oct	1	40,000	4280
4 Oct	0.5	14,970	1090
Columbia Plateau Sharratt et al., 2007	14	8535	-
4 Oct	1.5	6480	1510
Columbia Plateau Kjelgaard et al., 2004	-	6000	258
Texas Zobeck and Van Pelt, 2006	2.5	200	400
Texas Stout et al., 2001	-	166	-

*E-Samplers (MetOne Instruments) were used to measure PM₁₀ in this study; they were calibrated against an E-BAM (MetOne Instruments;US EPA Equivalent Method) for the soils at the burned site.

Fall 2010 – Summer 2011: PM₁₀ Emissions

Conclusions

- Fire can convert a wind erosion-resistant landscape into one that is highly erodible
 - Sediment fluxes on order of most erodible landscapes in US
 - Vertical fluxes of PM₁₀ on the upper end of what has been reported in the literature
- Post-fire wind erosion poses risks both on-site and far downwind
- Dust emissions can persist for months after a fire

Other Questions

- Where is wind erosion a postfire risk?
 - Ecotype, climate, terrain
- Erosion immediately post-fire
- Erosion mitigation
- Forecasting post-fire wind erosion events
- Impacts and interactions
 - Air quality
 - Deposition
 - Soil productivity
 - Aeolian-fluvial interactions

Thank You!

nwagenbrenner@fs.fed.us

This work is supported by the Bureau of Land Management and US Department of Defense.