SOIL PROPERTY EFFECTS ON WIND EROSION OF ORGANIC SOILS

Ted M. Zobeck1, Matthew Baddock1,4, R. Scott Van Pelt2, John Tatarko3, and Veronica Acosta-Martinez1

1Wind Erosion \& Water Conservation Research Unit, USDA-ARS, Lubbock, TX, USA
2Wind Erosion \& Water Conservation Research Unit, USDA-ARS, Big Spring, TX, USA
3Engineering \& Wind Erosion Research Unit, USDA-ARS, Manhattan, KS, USA
4Dept. of Environmental Sciences, University of Virginia, Charlottesville, VA, USA
Organic soils, also called Histosols, are dominated by organic material (>20% OM) in half or more of the upper 80 cm.

Total of 21 million ha of Histosols in US
WEPS has been developed to simulate wind erosion on agricultural land in the US, including soils with organic soil material surfaces. However, additional field measurements are needed to calibrate and validate estimates of wind erosion of organic soils using WEPS.

We are interested in how soil properties affect wind erosion of organic soils.
Study Site Locations in Michigan

Organic Matter Content
H - 50.5%
M - 43%
L - 19%
Study Site Locations in Florida

Organic Matter Content
H – 67%
M – 20%
L – 16.5%
ANATOMY OF THE WIND TUNNEL

- 1m diameter fan
- Abrader feeder
- Isokinetic fans
- Hot wire anemometer
- Isokinetic slot sampler
- Glass-fiber filters
- Sensit
- GRIMM particle analyzer
- Conditioning section
- Saltation sampler
Three 6 m x 0.5 m plots (replications) were established for each soil. Each plot was roto-tilled, then raked and finally rolled flat to make surface roughness as similar as possible across all plots.
Run 0: a 10 min blow with flow velocity started at 0 and increased to a target 12.6 m s\(^{-1}\) at 0.5 m above the surface. This run captured the initial blow-off of sediment.

Run 1: a 20 min blow with dust-free abrader sand (0.03\% <\text{PM}\(_{10}\)) added into the flow to provide saltation bombardment.

Run 2: a final 10 min run with abrader.
SOIL PROPERTIES INVESTIGATED

- Dry Aggregate Size Distribution and Stability
- Wet Aggregate Size Distribution and Stability
- Soil Particle Density
- Organic Matter Content
- Texture
DRY AGGREGATE STABILITY AND PERCENT ERODIBLE MATERIAL

• Mechanical Stability – Measure of breakdown after sieving twice
• Percent Erodible Material (Percent < 0.9 mm)
Dry Clod/Aggregate Stability

Vertical Soil Aggregate Crushing Energy Meter – V-SACEM
WET AGGREGATE STABILITY AND SIZE DISTRIBUTION

- Fraction Greater Than 250 µm
- Mean Weight Diameter (MWD)
SOIL PARTICLE DENSITY

Uses helium as the pycnometric fluid

Measured particles greater than 100 microns
ORGANIC MATTER/ORGANIC CARBON

- Elementar Vario Max - TOC
- Muffle Furnace – Loss on Ignition (400°C)
Results and Discussion
Effect of LOI Organic Matter on Dry Mechanical Stability and Dry Erodible Aggregates

LOI Organic Matter (%)

Dry Mechanical Stability (%)

LOI-OM vs Dry Mech Stab
LOI-OM% vs Dry Erodible Aggs

Dry Erodible Aggregates (%)

Sandy Soils
Relationship of Dry Erodible Aggregates and Clod Stability

\[Y = 16.0361 - 0.2807X + 0.0014X^2 \]
\[R^2 = 0.89 \]

Sandy Soils
Pearson Correlation Coefficients

<table>
<thead>
<tr>
<th></th>
<th>PM$_{10}$ Flux</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Run 0</td>
</tr>
<tr>
<td>Soil Sand Content</td>
<td>0.25</td>
</tr>
<tr>
<td>Dry Mechanical Stability</td>
<td>-0.68</td>
</tr>
<tr>
<td>Percent Dry Erodible Content</td>
<td>0.80</td>
</tr>
<tr>
<td>Clod Stability</td>
<td>-0.74</td>
</tr>
<tr>
<td>LOI Organic Matter Content</td>
<td>-0.39</td>
</tr>
<tr>
<td>Particle Density</td>
<td>0.48</td>
</tr>
</tbody>
</table>
Effect of Dry Erodible Aggregates on Run 0 PM$_{10}$ (μg m$^{-3}$ s$^{-1}$) Weibull Equation Model

\[Y = 0.2926X^{0.0171X} \]

\[R^2 = 0.92 \]
Effect of Dry Erodible Aggregates on Dust Flux Logistic Equation Model

Run 1

Y = 33.5640/(1 + 44.7249e^{-0.4373X})
R² = 0.52

Run 2

Y = 25.4498/(1 + 74.5505e^{-0.1020X})
R² = 0.64
Observed Versus Predicted Run 2 PM$_{10}$ (μg m$^{-2}$ s$^{-1}$)

\[Y = -325.09 + 1.119 \times \text{LOI}_\text{OM} + 6.305 \times \text{Clod}_\text{stab} + 131.20 \times \text{Part}_\text{den} \]

\[R^2 = 0.86 \]

- Independent Variables
 - LOI Organic Matter
 - Clod Stability
 - Particle Density
Observed Versus Predicted Run 2 PM₁₀ (µg m⁻² s⁻¹)

\[Y = -177.64 + 0.619 \times \text{LOI}_\text{OM} + 0.285 \times \text{Mech}_\text{stab} + 73.60 \times \text{Part}_\text{den} \]

\[R^2 = 0.80 \]

Independent Variables
- LOI Organic Matter
- Mechanical Stability
- Particle Density
CONCLUSIONS

- Organic matter content directly related to measures of dry stability and inversely related to sand content, particle density, and percent erodible material.
- Sand content was directly related to percent erodible material.
- Percent erodible material was inversely related to clod stability.
CONCLUSIONS

- Dust emissions were most directly related to percent dry erodible material and clod stability.
- Examination of multiple linear models revealed organic matter, dry stability and particle density produced good predictive models of dust emissions.
Any Questions?