Incorporating the Wind Erosion Prediction System (WEPS) into the AIRPACT Regional Air Quality Modeling System

Research Team

Serena Chung, Brian Lamb, Joe Vaughan, and Timothy VanReken Laboratory for Atmospheric Research Washington State University, Pullman, Washington

> Jincheng Gao Agronomy Department Kansas State UniversityManhattan, Kansas

Larry Wagner and Fred Fox USDA-ARS Engineering and Wind Erosion Unit, Manhanttan, Kansas

This work is supported through USDA research grant WNR-2008-03918

Tomorrow's Air Quality: AIRPACT-3 Daily Forecast System

- WRF Weather Research and Forecasting model
- SMOKE: Sparse Matrix Operating Kernal for Emissions processing.
- CMAQ: Community Multi-scale Air Quality model:
 - O3, PM, and air toxics chemistry
 - PM in Aitken, accumulation, & coarse modes
 - Wet and dry deposition of N, S, O₃, & Hg species

Sulfates

Organic aerosols

PM2.5 total mass

PM coarse (wind-blown dust)

AIRPACT Modeling Framework

Databases

Modules

WRF-EROSION-CMAQ Sensitivity Cases

- Use WRF/MCIP meteorology at 12-km resolution to drive WEPS EROSION module
- WEPS/EROSION simulation
 - Base case: Landuse and soil data at 12-km resolution
 - Sensitivity case: Landuse and soil data at 1-km resolution
 - Sensitivity case: range of soil moistures
- Three Test Cases:
 - September 23-25, 1999
 - October 4, 2009
 - August 26, 2010
- Simplifications:
 - no standing biomass
 - no residue
 - dry soil (base case)

September 23-25, 1999 Event

PM₁₀ Concentrations at Kennewick, WA

Observations at Spokane

MM5/EMIT/CALGRID Sundram et al., 2004

PM2.5 ~ 6% of *PM10*

Sensitivity to Soil Data Resolution

12-km Resolution with Area-Mean Soil Properties 1-km Resolution with 8 Soil Map Units in each 1-km Cell

g km⁻² s⁻¹

Sensitivity to Input Data Resolution and Surface Soil Moisture: PM₁₀ Emissions

October 4, 2009 Windstorm

http://lar.wsu.edu/airpact-3/windblowndust.html

Forecast Sensitivity to Wind Speed

PM_{10} Concentration at

Modeled 10-m Wind Speed at Emission Source

Kennewick

August 26, 2010 Event

Good model-observation agreement if surface aerodynamic roughness is changed from $z_0=20$ mm (WEPS default) to $z_0=120$ mm

Summary for Sensitivity Study using only EROSION module

- Aggregating soil data to a more coarse spatial resolution decreases windblown PM₁₀ emissions, but the difference is very small.
- Model results are very sensitive to surface soil moisture.
- Model results are very sensitive to wind speed, and small differences in the forecast winds can cause large differences in forecast dust events.
- With WRF-EROSION-CMAQ, the surface roughness length in EROSION had to be adjusted in order to achieve good model performance.

August 26, 2010 Event

Next Steps

- Investigate improvements to WRF-WEPS-CMAQ to address underestimation of PM₁₀ concentrations
 - Modify fraction of PM10 related to horizontal soil erosion for eastern WA vs the midwest
 - Adjust threshold friction velocities
 - Use of MCIP Ustar vs EROSION Ustar.
- Extend the framework to regions outside the state of Washington.
- Incorporate PM2.5 component of windblown dust
- Improve the computational efficiency in order to implement AIRPACT-WEPS as a forecast tool.
- Investigate satellite products for near real-time landcover/soil status