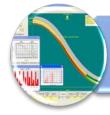


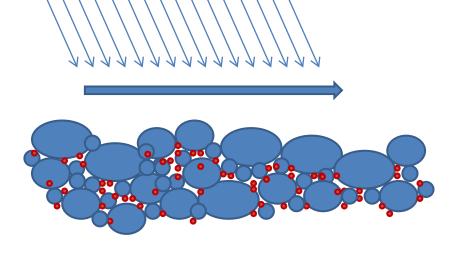
Modeling the reduction in soil loss due to soil armouring caused by rainfall erosion


T.A. Cochrane¹, D.C. Yoder², and D.C. Flanagan³, S.M. Dabney⁴, P. Weber⁵

¹ University of Canterbury
 ² University of Tennessee
 ³ National Soil Erosion Research Lab., USDA-ARS
 ⁴ National Sedimentation Lab., USDA-ARS
 ⁵ Solid Energy Ltd., New Zealand

Contents

Observations and Experiments



Modeling Armouring (RUSLE and WEPP)

Future work

Introduction: What is armouring?

- 1. Rainfall triggers:
 - •Sheet erosion
 - Concentrated flow erosion
- 2. Fine soil material is eroded away leaving coarser material behind.
- 3. Coarse material provides protection for the underlying soil, reducing further erosion.

OUR current erosion models do NOT account for this – thus over-predicting erosion / sediment yields on soils susceptible to armouring.

Where does it occur?

- Field observations of "natural" armouring of topsoil in various types of soils (rangeland, etc).
- After land use change (disruption of soil)
 - Construction sites
 - Mining
 - Road construction

A need to understand soil armouring

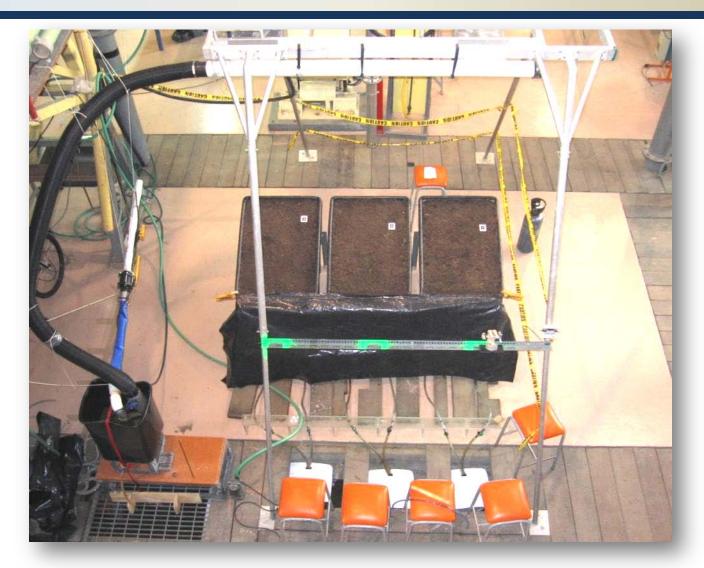
- At what rate does armouring occur?
- How much does armouring change soil erosion?
- What other factors impact armouring?
- How can we model it?

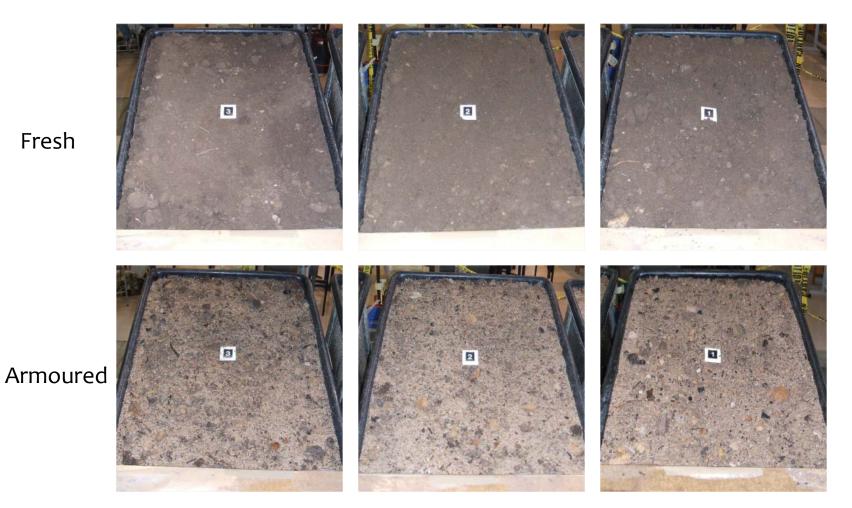
Observations and Experiments

Lab based rainfall simulation experiments

Ехр	Soil type	Slope (deg)	Reps	no. of rain events	rain event length	Intensities (mm/hr)
1	Topsoil A	18	3	6	1 hr	66, 44, 33, 52, 21, 80
2	Topsoil A	18	3	5	1 hr	22, 22, 22, 22, 80
3	Topsoil A	18	3	5	1 hr	45, 45, 45, 45, 80
4	Topsoil A	18	3	5	1 hr	66, 66, 66, 66, 80
5	Topsoil B	24	3	5	1 hr	22, 22, 22, 22, 80
6	Topsoil B	24	3	5	1 hr	45, 45, 45, 45, 80
7	Topsoil B	24	3	5	1 hr	66, 66, 66, 66, 80
8	Topsoil B	24	3	3	1 hr	80, 22, 22
9	Granite sub-soil	5	2	4	0.5 hr	80, 80, 22, 22
10	Mine waste rock	5	1	4	0.5 hr	80, 80, 22, 22

+ Field observations at mine restoration site




+ Observed armouring of sandy soils on steep slopes

Experimental setup under a rainfall simulator



Observed changes


Fresh

Armouring experiments before and after

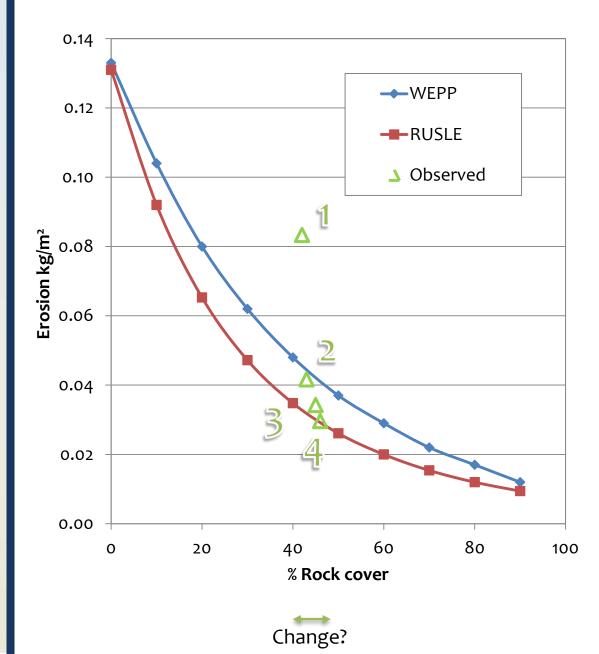
Experiment results

Erosion from fresh soil vs. armoured soil under 22 mm/hr rainfall

Modeling armouring

Manual

- Change cover or soil erodibility after each event.
- Can be readily done using either:
 - RUSLE 2
 - WEPP
- BUT, need to know armouring rate (change in rock cover)



Automatic

- Model internally accounts for armouring
 - Needs:
 - % Rock cover
 - Mass cover
- Takes care of disturbances to armouring layer
- Requires code changes

Manual modeling

Additional experiments

45 mm/hr

----WEPP

-----RUSLE

Observed

60

40

% Rock cover

80

100

1.8

1.6

1.4

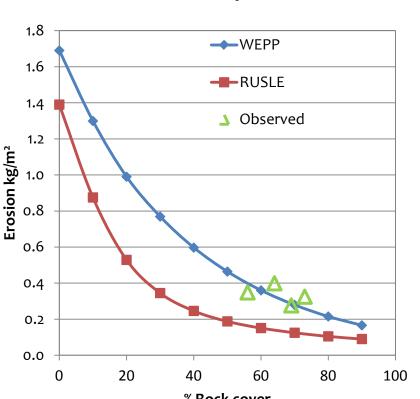
1.2

1.0

0.8

0.6

0.4

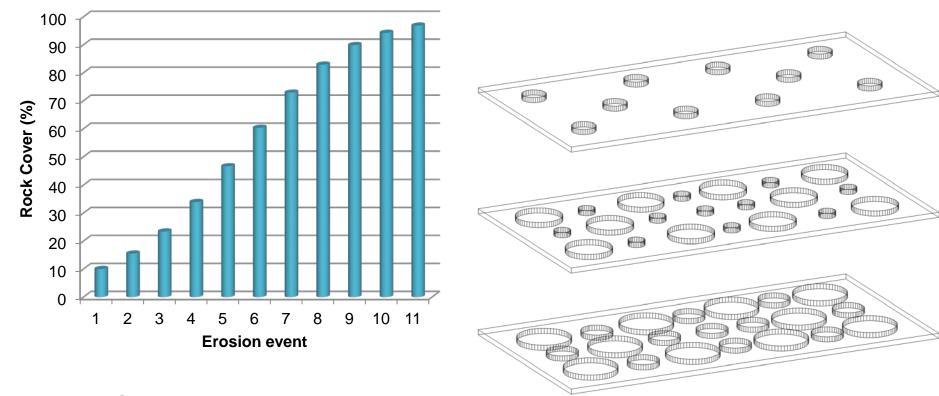

0.2

0.0

0

20

Erosion kg/m²


% Rock cover

66 mm/hr

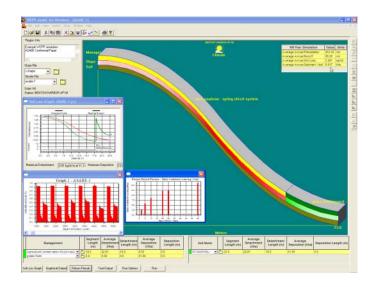
Proposed automatic modeling with RUSLE

Main Inputs	 Current rock cover (RC_o) - what is found just after the first rainfall following a coverage disturbance event Rock cover mass (MC_o) - what you would have if you pick up all rock from the surface 	
Assumption 1	 MC can be calculated from rock size distribution – rock particles represented as sphere/cubes to simplify calculations 	
Assumption 2	 The mass fraction of rock in any soil "slice" is the same as the percent cover times the density ratio [ρ_{rock}/ρ_{soil} ≈ 2.65g/cc / 1.35g/cc ≈ 2] 	
Assumption 3	• The mass-cover relationship for rock cover has the same shape as the residue mass-cover relationship: RC = 100 [1 – exp(-a * MC)]	
Assumption 4	• The same value of " <i>a</i> " used for all of the soil "slices"	

Exposure of rock cover

 $RC_o = 10\%$ $MC_o = 1 \text{ kg/m}^2$ Erosion/event = 3 kg/m² (exaggerated)

What RUSLE already does and doesn't do with rock cover


- <u>already</u> correctly calculates how the rock and other surface covers overlap
- <u>already</u> accounts for the conformance of rock to the surface
- <u>does not</u> account_for the impact of soil-disturbing operations on the soil-based rock cover, <u>but</u>
 - does for [gravel-rock] mulch applied to the surface
 - a burial fraction and a resurfacing fraction for gravelrock calculated for each operation
 - running the soil-based rock through the same routines as added rock would automatically take care of partial tillage and other operations.

Issues to address – re: Disturbance

- Burial and resurfacing values for current operations for rock are about the same as for the more fragile residues
 - 20% for a ridge-till planter
 - 90% for a straight chisel
- After each disturbance operation, RC should approach the initial RC_o value, rather than zero.

Automatic modeling with WEPP

- Similar approach as RUSLE: rock cover
- Already accounts for %rock content in soil
- Change in soil roughness with armouring
- Code changes required

Future work

- Verification studies
 - Field plots
 - Disturbance of armouring layer
 - Concentrated flows rills
 - Rainfall patterns, hail, snow
 - Mechanical disturbance
- Movement of particles larger than 2 mm in steep slopes
- Coding 🖌
- - Include automatic armouring
 - Erosion of larger particles in steep slopes?

Questions?

