Contributions of Historical Extreme Typhoon Events to Sediment Yield from Lin-Pien Watershed

Chia-Chun Wu, Kuan-Sheng Wu, Ching-Lun Kao

Paper #11082

American Society of Agricultural and Biological Engineers 2011

Introduction

Material and Methods

Results and Discussion

Conclusion

Introduction

Due to the climate change, extreme climatic events occur more frequently around the globe; especially in the last decade.

Taiwan was unable to be excluded from this global phenomenon. Weak geologic formation, position in Pacific Fire Ring, abundant precipitation received from summer typhoon makes Taiwan be prone to natural disasters.

The objective of this study is to investigate how climate change affects the occurrence and magnitude of extreme typhoon events as well as the sediment yield from 314,695 km² Lin-Pien watershed.

Introduction

mght @ 2011-2016 NPUST-SWC-SERU-

Material and Methods(1/5)

Continuation and Geologic Formation

Material and Methods(2/5)

Continuation and Geologic Formation

Legend:

- 🛄 Llin-Pien Watershed
 - Miocene, Lushan Formation (Argillite,Slate,Phyllite)
 - Eocene,Hsitsun Formation,HsinIcao (Phyllite,Slate,with Sandstone interbeds)
 - Pleistocene, Terrace Deposits (Gravel, Sand, Clay)
 - Recent,Alluvium

4.5Km

Argillite, slate, and phyllite More than 50%

A thrust fault

used to be active dated back 10 to 500 thousand years ago

Material and Methods(3/5)

O Data Sources

Suspended sediment concentration, 10-yr precipitation records from three gauging stations, and flow discharge records gathered by Water Resources Agency at the outlet of the watershed was used to facilitate the analysis.

Material and Methods(5/5)

Typhoon events affecting Taiwan from 2004 to 2009 Suspended sediment sampled using DH-48 and DH-58 samplers Precipitation

 Thiessen polygon method was used to estimate the average precipitation of the study watershed

Anomaly method was used to analyze the trend of storm characteristics. Average annual precipitation from n-year records was first obtained.

Variation of annual precipitation; defined as the difference between annual and average annual precipitation; was calculated for the entire n-year records.

Variations of Annual Precipitation

Year

Variations of Annual Rainy Day

D_y - $D_{(2004-09)}$ = Variation of annual rainy day

Year

Top Ten Typhoon Events (2004~2009)

Ranking	Typhoon	Year of occurrence	Effective date	Total event precipitation Pe (mm)	Annual precipitation Py (mm)	Pe/Py (%)
1	Morakot	2009	08/05~10	2117.2	3777.7	56.05
2	Haitang	2005	07/16~20	1602.5	4997.5	32.06
3	Bilis	2006	07/12~15	857.9	3524.3	24.34
4	Mindulle	2004	06/28~07/03	695.0	2914.4	23.85
5	Fung Wong	2008	07/26~29	670.4	4448.8	15.07
6	Kalmaegi	2008	07/16~18	669.0	4448.8	15.04
7	Kaemi	2006	07/23~26	435.3	3524.3	12.35
8	Jangmi	2008	09/26~29	465.8	4448.8	10.47
9	Sepat	2007	08/16~19	475.7	4610.2	10.32
10	Krosa	2007	10/04~07	449.4	4610.2	9.75

Ranked by Total Precipitation

Top Ten Typhoon Events (2004~2009)

Oevastating Typhoon Event - Morakot

Total Precipitation, API, and Flow Discharge

Total Precipitation, API, and Suspended Load

Flow Discharge and Sediment

The scatter plot of sediment load and flow discharge collected between 2001 and 2009 shows that greater portion of data points fall in the sector with sediment load one standard deviation heavier than the 8-yr mean.

Data collected in 2009 constitute the majority in the sector with sediment load measured 5 standard deviation higher than the 8-yr mean.

All evidence supports the negative impact of less frequent yet high precipitation typhoon events exerts on watershed sediment yield.

Rise in annual precipitation from 2004 to 2009 along with a negligible increase in annual rainy day emerges the intensification of rainfall intensity, greater soil loss, and higher sediment yield.

API calculated 7-day before the typhoon event fails to reflect the flow discharge and sediment load sampled during or immediately after the storm event.

Total precipitation seems to correlate better to both flow discharge and sediment concentration.

CONCLUSIONS

Anomaly method shows that apparent increase in annual precipitation with negligible increase in annual rainy day, which implies the increase of average daily rainfall intensity. Hence, the study watershed has been constantly facing the risk of high intensity rainfall in recent years.

Thank You !

Paper #11082

American Society of Agricultural and Biological Engineers 2011