Objectives

1) To estimate the components of overland flow shear stress on disturbed and undisturbed rangelands by applying the Darcy-Weisbach friction partitioning method to field collected experimental data.

2) To investigate the vegetation cover limit at which the soil shear component is substantially reduced, limiting the erosion rate.

Study Areas

![Central Site (unvegetated)](image1)

- Burn Site
- Unvegetated Site
- Cut Site

Methods

1. Average slope, ground cover, vegetation cover, and microtopography were measured for each plot (All plots are 2x4 m).

2. All plots were pre-net prior to experiments.

3. Water was released at different inflow rates approximately 4 m above of runoff collection point.

4. Each inflow rate, flow velocity was measured by salt tracer method while the width and depth of each flow path were measured by ruler at several transects.

5. Total outflow discharge rate was determined from timed runoff samples collected during simulations.

6. Total flow discharge was proportionally distributed to the flow paths.

Concentrated versus Sheet Flow

\[R_c = \frac{\text{depth of flow} \times \text{width of flow}}{\text{the hydraulic radius of flow}} \]

Empirical Hydraulic Friction Equations

Flow

\[f_i = \frac{10^{R_i^2} - 1}{10^{R_i^2}} \]

Concentrated

\[10^{R_i^2} = \frac{f_i}{f_{c,0.52}} \]

Sheet

\[10^{R_i^2} = \frac{f_i}{f_{s,0.52}} \]

where:

- \(f_i \): the specific weight of water (N m^-1 s^-1)
- \(R_i \): the hydraulic radius of the plot
- \(f_{c,0.52} \): the hydraulic friction factor of the unvegetated surface
- \(f_{s,0.52} \): the hydraulic friction factor of the vegetated surface

Shear Stress Partitioning Equations

Empirical equations that predict the ratio of soil shear stress to the total shear stress.

\[\tau_{soil} = \frac{K}{\tau_s} \]

where:

- \(\tau_{soil} \): shear stress on soil
- \(\tau_s \): shear stress on the total ground area
- \(K \): soil shear reduction by vegetation cover

Acknowledgements

This research was funded in part by the USDA NREC/ESIS Conservation Efficiency Assessment Project (CEAIP) and the U.S. Interagency Post Fire Research Program. Field studies at playful and juniper woodland sites in the project are part of the Sagebrush Treatment Evaluation Project (SageSTEP) funded by the U.S. Joint Fire Sciences Program. USDA is an equal opportunity provider and employer.