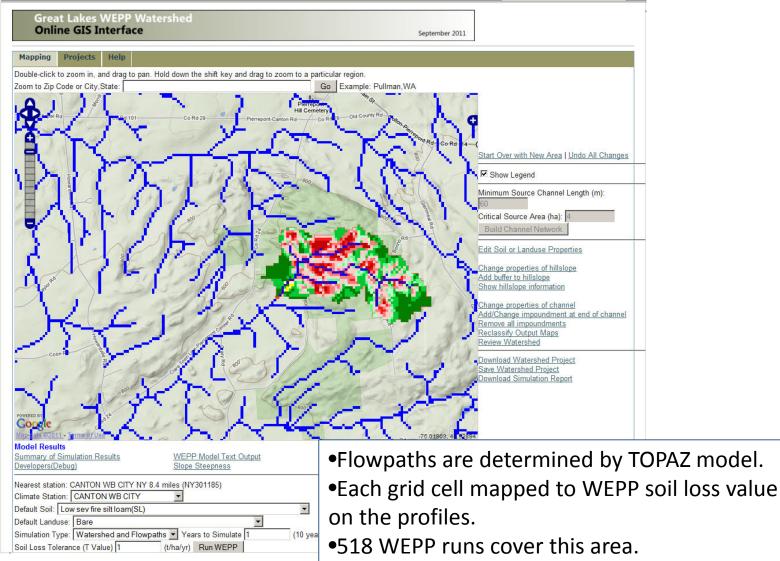
Development of a GIS Interface for WEPP Model Application to Great Lakes Forested Watersheds

J.R. Frankenberger¹, S. Dun², D.C. Flanagan¹, J.Q. Wu², W.J. Elliot³

¹USDA-ARS, West Lafayette, IN ²Washington State University, Puyallup, WA ³USDA Forest Service, Moscow, ID 2011 International Symposium on Erosion and Landscape Evolution September 19, 2011 Anchorage, AK

WEPP Model Background

- The Water Erosion Prediction Project (WEPP) model predicts soil erosion and runoff from hillslopes and small watersheds.
- Process based model includes climate and crop growth, channel processes, soil hydrology. No fertilizers, pesticides.
- Released in 1995. Major recent improvements for bedrock restrictive layer, detailed winter freeze/thaw by Shuhui Dun.
- US Forest Service has developed online web tools for roads, disturbed lands using hillslope WEPP.

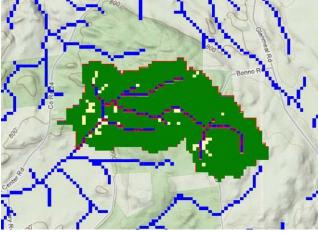

WEPP GIS Options

- Desktop GeoWEPP, based on ArcGIS is used to run WEPP watershed applications. GeoWEPP is used by the Forest Service to evaluate remediation after fires.
- GeoWEPP requires ArcGIS expertise to prepare the data layers.
- The WEPP online interface for Great Lakes forested watersheds provides an alternative to GeoWEPP.
 More detailed followup simulations can be done with GeoWEPP.
- Focused on Forest Service applications, but can be used for other land uses and for areas outside the Great Lakes.

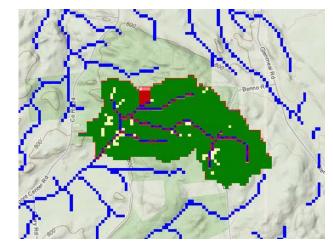
Objectives of Online GIS WEPP

- Allow users to easily run WEPP watershed simulations from standard web browsers.
- Customize online WEPP soils and land use databases for forest simulations.
- Develop methods to efficiently run the WEPP watershed simulations on servers.
- Allow GIS data from other sites to be used, such as USGS land use and NRCS soils data.
- Make the server setup configurable so it can be deployed on mirror sites.

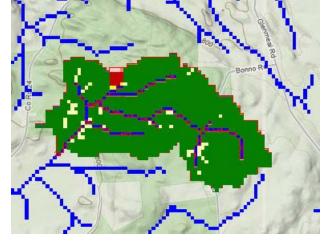
Flowpath Erosion Output Map


WEPP GIS Operations

- Change land use and/or soil for a subcatchment.
- Add a buffer to the end of a subcatchment.
- Change USGS land use association with a WEPP input.
- Add an impoundment to the end of a channel.
- Select a different set of channel properties.


WEPP GIS Operations

- Override soil or land use maps to evaluate potential impacts.
- Reclassify outputs to different soil loss thresholds.
- Apply PRISM climate adjustments to account for elevation changes from a base climate station.
- Vary the run type, all flowpaths (detailed) or representative hillslope (watershed channels).


Modifying Land Use Areas

•Original Forested Area

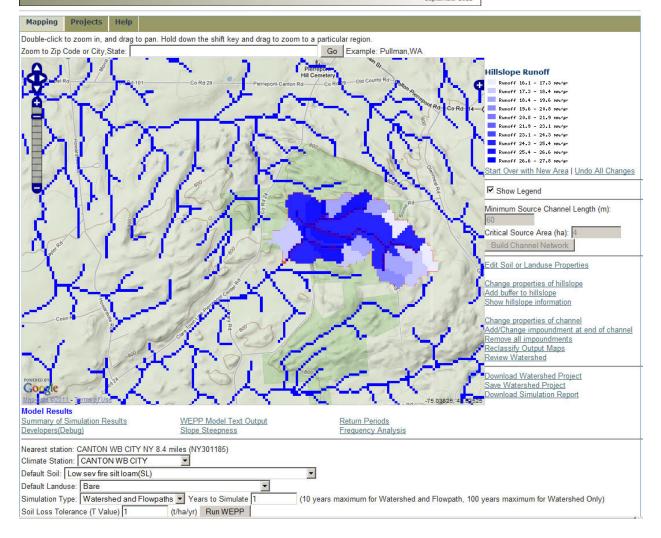
Burned area generates more erosion
Sediment to channel 11.1 t/yr

- •Area with buffer next to channel.
- •Yellow cells indicates deposition.
- •Sediment to channel 6.8 t/yr

Hillslope Erosion Output Map

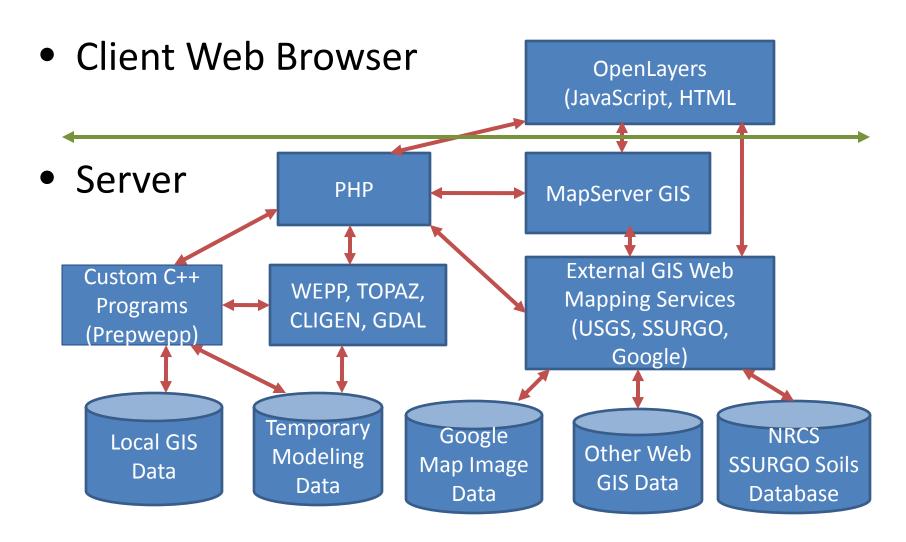
Great Lakes WEPP Watershe Online GIS Interface

September 2011


•35 WFPP runs to cover the area

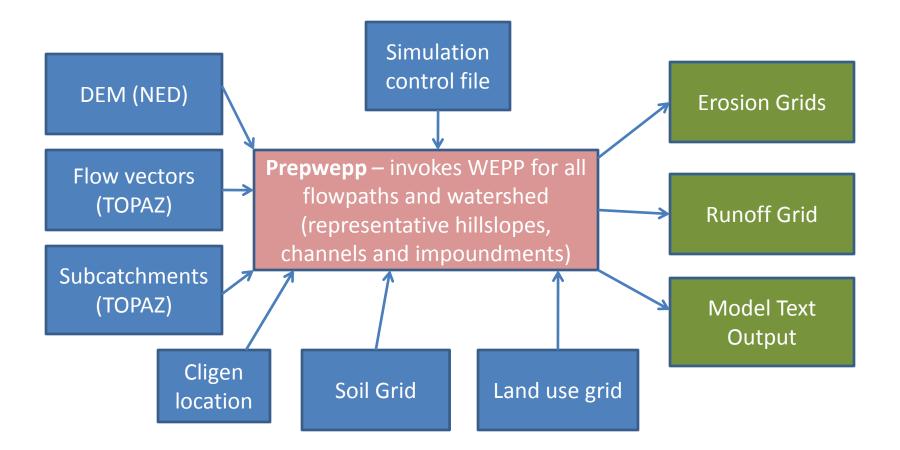
Runoff Output Map

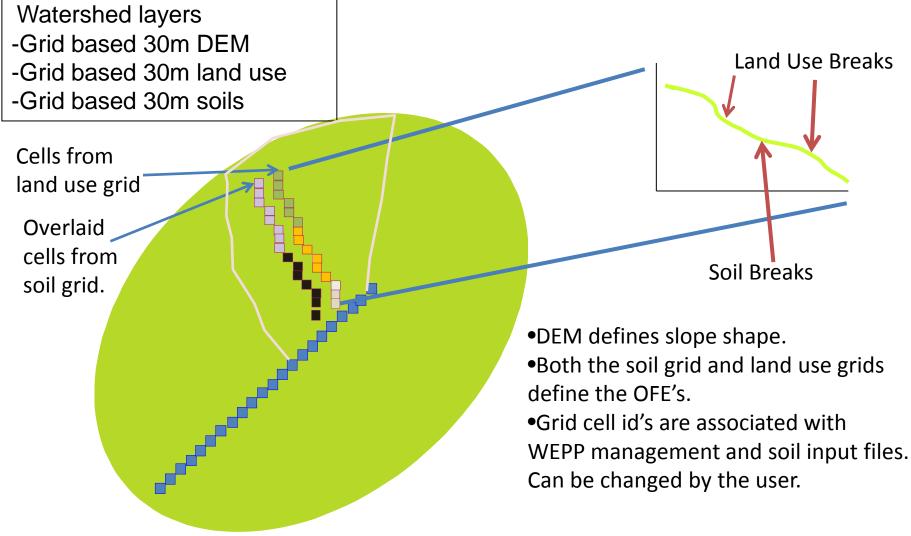
Great Lakes WEPP Watershed Online GIS Interface


September 2011

Major Software Pieces

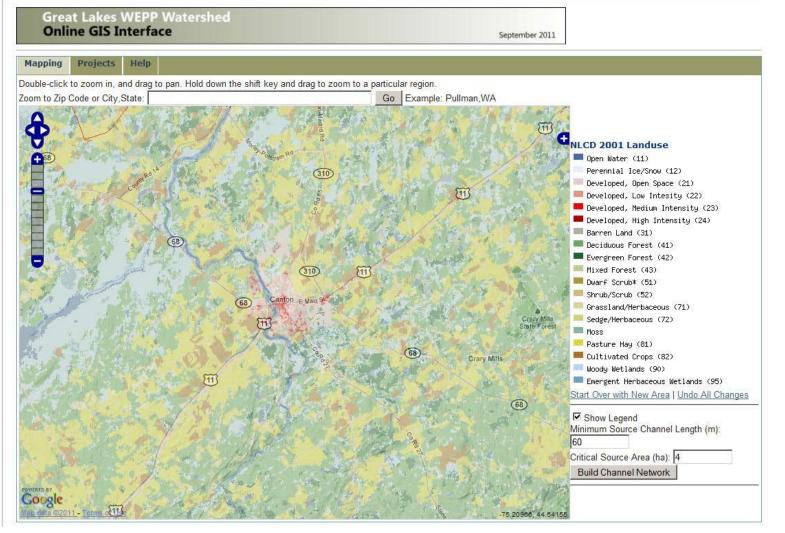
- OpenLayers+Google Images+MapServer Allows user to locate area of interest, assemble grids, visualize outputs.
- **GDAL** Geospatial Data Abstraction Library, GIS processing functions.
- TOPAZ Performs DEM analysis, watershed delineation, subcatchments, flow direction, channel network.
- Prepwepp Builds WEPP inputs from grids, runs WEPP model, produces output maps.


Software Architecture


WEPP Watershed Inputs

- **Topography** Derived from USGS 30 meter DEM using TOPAZ model.
- Land Use From USGS Landcover map, general types are associated with WEPP management.
- **Soil** Built from SSURGO spatial and tabular data for area of interest. Can also use local forest soils.
- **Climate** Generated from CLIGEN, can be adjusted with PRISM grids to account for elevation differences.
- Watershed channel structure Determined from TOPAZ.

WEPP Modeling

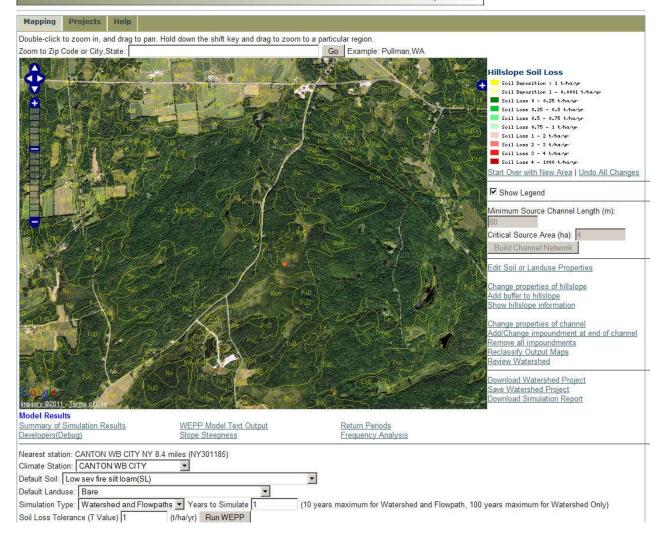

Processing Flowpaths

Land Use Choices

Shrubs	 Shrubs 	T
Custom Managements Forest Mature forest Thin or young forest Shrubs Good grass Poor grass Low severity fire High severity fire Prescribed fire Bare Mulch only Mulch and till Low traffic road High traffic road High traffic road Barley, conventional tillage, Palouse Barley, mulch tillage, Palouse Barley, no till, Palouse	Agriculture Barley, conventional tillage, Pa Barley, mulch tillage, Palouse Barley, no till, Palouse Barley, no till, Palouse alfalfa with cuttings corn,soybean,wheat,alfalfa(4yr corn,soybean,wheat,alfalfa(4yr corn,soybean,wheat,alfalfa(4yr corn,soybean-fall moldboard p corn,soybean-fall mulch till corn,soybean-no till corn,soybean-no till corn-fall moldboard plow corn-fall mulch till corn-spring chisel plow fallow fallow tilled	rs)- consv till rs)- conv till rs)- no till blow
alfalfa with cuttings	grass soutpean-fall moldboard plow	-

Landcover Map

Soil Choices


Ē

Shrub loam(SL)		Shrub Ioam(SL)	-
Custom Soils SSURGO Soils Carbondale muck Potsdam-Tunbridge complex, 3 to 1 Roundabout silt Ioam, 0 to 2 percen Tunbridge-Lyman-Dawson complex Tunbridge-Lyman-Dawson complex Forest Soils Bare Rock(SL) Bunch Grass clay Ioam(CL) Bunch Grass soloam(SL) Bunch Grass soloam(SL) Bunch Grass soloam(SL) Bunch Grass soloam(SL) Forest clay Ioam(CL)	t slopes percent slopes, very rocky	Forest Soils Bare Rock(SL) Bunch Grass clay loam(CL) Bunch Grass loam(SL) Bunch Grass sandy loam(S) Bunch Grass silt loam(SL) Forest clay loam(CL) Forest loam(SL) Forest silt loam(SL) High sev fire clay loam(CL) High sev fire loam(L) High sev fire sandy loam(S) High sev fire sandy loam(S) High sev fire sandy loam(S)	
Forest loam(SL) Forest sandy loam(S) Forest silt loam(SL) High sev fire clay loam(CL) High sev fire loam(L) High sev fire sandy loam(S)	Shrub loam(SL) Young forest sandy loam(S) Young forest silt loam(SL) WEPP Database ADAMS(LFS) ADJIDAUMO(SICL) AGAWAM(FSL) ALBRIGHTS(SIL) ALDEN(SIL) ALLAGASH(FSL) ALLARD(SIL) ALTON(GR-SL) AMBOY(VFSL) AMBOY(VFSL) AMENIA(SIL) APPLETON(L) AQUENTS(GR-LS) ARKPORT(VFSL)		

NRCS SSURGO Map

Great Lakes WEPP Watershed Online GIS Interface

September 2011

Server Implementation

- http://WEPPonlineGIS.puyallup.wsu.edu
- Server for Great Lakes WEPP watershed application
- Dell PowerEdge, 2-CPU Intel Quad cores, 8GB memory, 250GB drive
- o Ubuntu Linux
- http://milford.nserl.purdue.edu/
- General WEPP server for NSERL, hillslope and watershed
- Custom built, 1-CPU Intel Quad core, 4GB memory, 150GB drive, 120GB SSD drive
- o Gentoo Linux

Performance

- Larger watershed area, including number of flowpaths and number of representative hillslopes increases runtime.
- Multiple OFE runs take longer. The more land use and soil changes along a profile the longer the simulation. Roughly linear.
- Length of simulation, whether all flowpaths are simulated.
- Server setup, number+speed of CPU's, hard disk types, compiler used for WEPP.

Performance

- Run on NSERL server (Intel Quad core)
- 134 ha watershed, 35 hillslopes, 15 channels, 518 flowpaths, single soil and land use, 1 year run.

Concurrent Sessions	Simulation Time (secs)
1	9
4	17
5	20

Representative hillslopes only - < 1 second for 5 concurrent users.

Open Source Software Used

- **GDAL Software** Code to do GIS operations.
- **OpenLayers** Frontend for multiple GIS layers.
- MapServer online GIS, vector, grid data.
- **GnuPlot** General graphing
- **TcPDF** Create PDF documents from PHP
- **PostgreSQL** Server database
- Apache Web server
- **PHP** Server side scripting

Conclusions

- Web based approaches simplify WEPP watershed setup.
- Forest specific land use and soils can be merged with existing data sets.
- Performance is reasonable for small areas and limited run times.
- Detailed simulations still require desktop WEPP and GeoWEPP.